cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057431 Obtained by reading first the numerator then the denominator of fractions in full Stern-Brocot tree (A007305/A047679).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 2, 2, 1, 1, 3, 2, 3, 3, 2, 3, 1, 1, 4, 2, 5, 3, 5, 3, 4, 4, 3, 5, 3, 5, 2, 4, 1, 1, 5, 2, 7, 3, 8, 3, 7, 4, 7, 5, 8, 5, 7, 4, 5, 5, 4, 7, 5, 8, 5, 7, 4, 7, 3, 8, 3, 7, 2, 5, 1, 1, 6, 2, 9, 3, 11, 3, 10, 4, 11, 5, 13, 5, 12, 4, 9, 5, 9, 7, 12, 8, 13, 7, 11, 7, 10, 8, 11, 7, 9, 5, 6, 6, 5
Offset: 0

Views

Author

N. J. A. Sloane, Sep 08 2000

Keywords

Comments

When presented in this way, every row (e.g. row 3, 1 3 2 3 3 2 3 1) is a palindrome. - Joshua Zucker, May 11 2006

Crossrefs

Programs

  • Maple
    F:= proc(n) option remember; local t;
    t:= L -> [[L[1], [L[1][1]+L[2][1], L[1][2]+L[2][2]], L[2]],
               [L[2], [L[2][1]+L[3][1], L[2][2]+L[3][2]], L[3]]][];
          if n=0 then [[[ ], [0, 1], [ ]], [[ ], [1, 0], [ ]]]
        elif n=1 then [[[0, 1], [1, 1], [1, 0]]]
                 else map(t, F(n-1))
          fi
        end:
    aa:= n-> map(x-> x[], [seq(map(x-> x[2], F(j))[], j=0..n)])[]:
    aa(7);   # aa(n) gives the first 2^(n+1)+2 terms
    # Alois P. Heinz, Jan 13 2011
  • Mathematica
    sbt[n_] := Module[{R, L, Y, w, u},
       R = {{1, 0}, {1, 1}};
       L = {{1, 1}, {0, 1}};
       Y = {{1, 0}, {0, 1}};
       w[b_] := Fold[#1.If[#2 == 0, L, R]&, Y, b];
       u[a_] := {a[[2, 1]] + a[[2, 2]], a[[1, 1]] + a[[1, 2]]};
       Map[u, Map[w, Tuples[{0, 1}, n]]]];
    Join[{0, 1, 1, 0}, Table[sbt[n], {n, 0, 5}]] // Flatten (* Jean-François Alcover, Sep 06 2022, after Peter Luschny in A007305 *)

Extensions

More terms from Joshua Zucker, May 11 2006