A114537
Dispersion of the primes (an array read by downward antidiagonals).
Original entry on oeis.org
1, 2, 4, 3, 7, 6, 5, 17, 13, 8, 11, 59, 41, 19, 9, 31, 277, 179, 67, 23, 10, 127, 1787, 1063, 331, 83, 29, 12, 709, 15299, 8527, 2221, 431, 109, 37, 14, 5381, 167449, 87803, 19577, 3001, 599, 157, 43, 15, 52711, 2269733, 1128889, 219613, 27457, 4397, 919, 191, 47
Offset: 1
Northwest corner of the Primeness array:
1 2 3 5 11 31 127 709 5381 52711 648391
4 7 17 59 277 1787 15299 167449 2269733 37139213 718064159
6 13 41 179 1063 8527 87803 1128889 17624813 326851121 7069067389
8 19 67 331 2221 19577 219613 3042161 50728129 997525853 22742734291
9 23 83 431 3001 27457 318211 4535189 77557187 1559861749 36294260117
10 29 109 599 4397 42043 506683 7474967 131807699 2724711961 64988430769
12 37 157 919 7193 72727 919913 14161729 259336153 5545806481 136395369829
14 43 191 1153 9319 96797 1254739 19734581 368345293 8012791231 200147986693
15 47 211 1297 10631 112129 1471343 23391799 440817757 9672485827 243504973489
16 53 241 1523 12763 137077 1828669 29499439 563167303 12501968177 318083817907
18 61 283 1847 15823 173867 2364361 38790341 751783477 16917026909 435748987787
20 71 353 2381 21179 239489 3338989 56011909 1107276647 25366202179 664090238153
21 73 367 2477 22093 250751 3509299 59053067 1170710369 26887732891 705555301183
22 79 401 2749 24859 285191 4030889 68425619 1367161723 31621854169 835122557939
24 89 461 3259 30133 352007 5054303 87019979 1760768239 41192432219 1099216100167
25 97 509 3637 33967 401519 5823667 101146501 2062666783 48596930311 1305164025929
26 101 547 3943 37217 443419 6478961 113256643 2323114841 55022031709 1484830174901
27 103 563 4091 38833 464939 6816631 119535373 2458721501 58379844161 1579041544637
- Alexandrov, Lubomir. "On the nonasymptotic prime number distribution." arXiv preprint math/9811096 (1998). (See Appendix.)
- Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria, 45 (1997) 157-168.
- Robert G. Wilson v, Table of n, a(n) for n = 1..172
- Neil Fernandez, An order of primeness, F(p)
- Neil Fernandez, An order of primeness [cached copy, included with permission of the author]
- Neil Fernandez, The Exploring Primeness Project
- Clark Kimberling, Interspersions and Dispersions.
- Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
- Robert G. Wilson v, The Northwest Corner of the Primeness Array (24 x 24).
Columns 1-13:
A018252,
A007821,
A049078,
A049079,
A049080,
A049081,
A058322,
A058324,
A058325,
A058326,
A058327,
A058328,
A093046.
If the antidiagonals are read in the opposite direction we get
A138947.
-
A114537 := proc(r,c) option remember; if c = 1 then A018252(r) ; else ithprime(procname(r,c-1)) ; end if; end proc: # R. J. Mathar, Oct 22 2010
-
NonPrime[n_] := FixedPoint[n + PrimePi@# + 1 &, n]; t[n_, k_] := Nest[Prime, NonPrime[n], k]; Table[ t[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten
(* or to view the table *) Table[t[n, k], {n, 0, 6}, {k, 0, 10}] // TableForm (* Robert G. Wilson v, Dec 26 2005 *)
A114538
Transposition sequence of the dispersion of the primes.
Original entry on oeis.org
1, 4, 6, 2, 8, 3, 7, 5, 11, 31, 9, 127, 17, 709, 5381, 52711, 13, 648391, 59, 9737333, 174440041, 3657500101, 277, 88362852307, 2428095424619, 75063692618249, 2586559730396077
Offset: 1
Start with the northwest corner of T:
1 2 3 5 11 31 127 709 5381 52711 648391
4 7 17 59 277 1787 15299 167449 2269733 37139213 718064159
6 13 41 179 1063 8527 87803 1128889 17624813 326851121 7069067389
8 19 67 331 2221 19577 219613 3042161 50728129 997525853 22742734291
9 23 83 431 3001 27457 319211 4535189 77557187 1559861749 36294260117
10 29 109 599 4397 42043 506683 7474967 131807699 2824711961 64988430769
12 37 157 919 7193 72727 919913 14161729 259336153 5545806481 136395369829
a(1)=1 because 1=T(1,1) and T(1,1)=1.
a(2)=4 because 2=T(1,2) and T(2,1)=4.
a(3)=6 because 3=T(1,3) and T(3,1)=6.
a(13)=17 because 13=T(3,2) and T(2,3)=17.
A236542
Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain.
Original entry on oeis.org
2, 7, 3, 13, 17, 5, 19, 41, 59, 11, 23, 67, 179, 277, 31, 29, 83, 331, 1063, 1787, 127, 37, 109, 431, 2221, 8527, 15299, 709, 43, 157, 599, 3001, 19577, 87803, 167449, 5381, 47, 191, 919, 4397, 27457, 219613, 1128889, 2269733, 52711
Offset: 1
The array starts:
2, 7, 13, 19, 23, 29, 37, 43, 47, 53,...
3, 17, 41, 67, 83, 109, 157, 191, 211, 241,...
5, 59, 179, 331, 431, 599, 919, 1153, 1297, 1523,...
11, 277, 1063, 2221, 3001, 4397, 7193, 9319,10631,12763,...
31, 1787, 8527,19577,27457,42043,72727,96797,112129,137077,...
-
A236542 := proc(n,k)
option remember ;
if n = 1 then
A007821(k) ;
else
ithprime(procname(n-1,k)) ;
end if:
end proc:
for d from 2 to 10 do
for k from d-1 to 1 by -1 do
printf("%d,",A236542(d-k,k)) ;
end do:
end do:
-
A007821 = Prime[Select[Range[15], !PrimeQ[#]&]];
T[n_, k_] := T[n, k] = If[n == 1, If[k <= Length[A007821], A007821[[k]], Print["A007821 must be extended"]; Abort[]], Prime[T[n-1, k]]];
Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 16 2020 *)
A138947
Square array T[i+1,j] = prime(T[i,j]), T[1,j] = j-th nonprime = A018252(j); read by upward antidiagonals.
Original entry on oeis.org
1, 4, 2, 6, 7, 3, 8, 13, 17, 5, 9, 19, 41, 59, 11, 10, 23, 67, 179, 277, 31, 12, 29, 83, 331, 1063, 1787, 127, 14, 37, 109, 431, 2221, 8527, 15299, 709, 15, 43, 157, 599, 3001, 19577, 87803
Offset: 1
The first row (1,4,6,8,9,10...) of the array gives the nonprime numbers A018252.
The 2nd row (2,7,13,19,23,29,37,...) of the array gives the primes with nonprime index, A000040(A018252(j)) = A007821(j).
The i-th row is { A000040(k) | A049076(k)=i-1 } = A078442^{-1}(i-1).
Column j is the sequence b(n+1)=prime(b(n)) starting with b(j)=A018252(j): A007097, A057450, A057451, A057452, A057453, A057456, A057457, ...
- Alexandrov, Lubomir. "On the nonasymptotic prime number distribution." arXiv preprint math/9811096 (1998). (See Appendix.)
If the antidiagonals are read in the opposite direction we get
A114537.
-
t[1, 1] = 1; t[1, 2] = 4; t[1, k_] := (p = t[1, k-1]; If[ PrimeQ[p+1], p+2, p+1]); t[n_ /; n > 1, k_] := Prime[t[n-1, k]]; Flatten[ Table[ t[n, k-n+1], {k, 1, 9}, {n, 1, k}]] (* Jean-François Alcover, Oct 03 2011 *)
-
p=c=0; T=matrix( 10,10, i,j, if( i==1, while( isprime(c++),); p=c, p=prime(p))); A138947=concat( vector( vecmin( matsize( T )),i, vector( i,j, T[ j,i+1-j ])))
A064960
The prime then composite recurrence; a(2n) = a(2n-1)-th prime and a(2n+1) = a(2n)-th composite and a(1) = 1.
Original entry on oeis.org
1, 2, 6, 13, 22, 79, 108, 593, 722, 5471, 6290, 62653, 69558, 876329, 951338, 14679751, 15692307, 289078661, 305618710, 6588286337, 6908033000, 171482959009, 178668550322, 5040266614919, 5225256019175, 165678678591359, 171068472492228, 6039923990345039
Offset: 1
Cf.
A007097,
A006508 &
A064961, see also
A057450,
A057451,
A057452,
A057453,
A057456 &
A057457 and
A049076,
A049077,
A049078,
A049079,
A049080 &
A049081.
-
Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1}; b = 1; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a
-
from functools import cache
from sympy import prime, composite
@cache
def A064960(n): return 1 if n == 1 else composite(A064960(n-1)) if n % 2 else prime(A064960(n-1)) # Chai Wah Wu, Jan 01 2022
A064961
Composite-then-prime recurrence; a(2n) = a(2n-1)-th composite and a(2n+1) = a(2n)-th prime and a(1) = 1.
Original entry on oeis.org
1, 4, 7, 14, 43, 62, 293, 366, 2473, 2892, 26317, 29522, 344249, 376259, 5429539, 5831545, 101291779, 107457490, 2198218819, 2310909505, 54720307351, 57128530327, 1543908890351, 1603146693999, 48871886538151, 50527531769529, 1720466016680911, 1772475453490311
Offset: 1
Cf.
A007097,
A006508 &
A064960, see also
A057450,
A057451,
A057452,
A057453,
A057456 &
A057457 and
A049076,
A049077,
A049078,
A049079,
A049080 &
A049081.
-
Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1, 4}; b = 4; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a
a(24)-a(26) corrected and a(27)-a(28) added by
Chai Wah Wu, Aug 22 2018
A058010
The main diagonal of N. Fernandez's Order of Primeness array.
Original entry on oeis.org
2, 17, 179, 2221, 27457, 506683, 14161729, 368345293, 9672485827, 318083817907, 12695664159413
Offset: 1
-
a = Select[ Range[ 20 ], ! PrimeQ[ # ] & ] Table[ Nest[ Prime, a[ [ n ] ], n ], {n, 1, 11} ]
Showing 1-7 of 7 results.
Comments