A057461 Numbers k such that x^k + x^3 + 1 is irreducible over GF(2).
1, 2, 4, 5, 6, 7, 10, 12, 17, 18, 20, 25, 28, 31, 41, 52, 66, 130, 151, 180, 196, 503, 650, 761, 986, 1391, 1596, 2047, 2700, 4098, 6172, 6431, 6730, 8425, 10162, 11410, 12071, 13151, 14636, 17377, 18023, 30594, 32770, 65538, 77047, 81858, 102842, 130777, 137113, 143503, 168812, 192076, 262146
Offset: 1
Links
- Joerg Arndt, Matters Computational (The Fxtbook), section 40.9.3 "Irreducible trinomials of the form 1 + x^k + x^d", p. 850
- Lucas A. Brown, Python program.
- Lucas A. Brown, Sage program.
Programs
-
PARI
for (n=1,5000, if ( polisirreducible(Mod(1,2)*(x^n+x^3+1)), print1(n,", ") ) ); /* Joerg Arndt, Apr 28 2012 */
-
Sage
P.
= GF(2)[] for n in range(10^4): if (x^n+x^3+1).is_irreducible(): print(n) # Joerg Arndt, Apr 28 2012
Extensions
a(24)-a(29) from Robert G. Wilson v, Aug 06 2010
Terms >= 4098 from Joerg Arndt, Apr 28 2012
a(47)-a(53) from Lucas A. Brown, Nov 28 2022
Comments