A057474 Numbers k such that x^k + x^5 + 1 is irreducible over GF(2).
2, 3, 6, 9, 12, 14, 17, 20, 23, 44, 47, 63, 84, 129, 236, 278, 279, 297, 300, 647, 726, 737, 2574, 2660, 4233, 4500, 8207, 11900, 16046, 21983, 23999, 24596, 24849, 84929, 130926, 156308, 160046, 185142, 270641
Offset: 1
Links
- Joerg Arndt, Matters Computational (The Fxtbook), section 40.9.3 "Irreducible trinomials of the form 1 + x^k + x^d", p.850
- Lucas A. Brown, Python program.
- Lucas A. Brown, Sage program.
Crossrefs
Cf. A002475.
Programs
-
Sage
P.
= GF(2)[] for n in range(10^4): if (x^n+x^5+1).is_irreducible(): print(n) # Joerg Arndt, Apr 28 2012
Extensions
a(23)-a(34) by Joerg Arndt, Apr 28 2012
a(35)-a(38) by Manfred Scheucher, Aug 18 2015
a(39) from Lucas A. Brown, Nov 28 2022
Comments