cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A057505 Signature-permutation of a Catalan Automorphism: Donaghey's map M acting on the parenthesizations encoded by A014486.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 5, 6, 4, 22, 21, 18, 20, 17, 13, 12, 15, 19, 16, 10, 11, 14, 9, 64, 63, 59, 62, 58, 50, 49, 55, 61, 57, 46, 48, 54, 45, 36, 35, 32, 34, 31, 41, 40, 52, 60, 56, 43, 47, 53, 44, 27, 26, 29, 33, 30, 38, 39, 51, 42, 24, 25, 28, 37, 23, 196, 195, 190, 194, 189
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Comments

This is equivalent to map M given by Donaghey on page 81 of his paper "Automorphisms on ..." and also equivalent to the transformation procedure depicted in the picture (23) of Donaghey-Shapiro paper.
This can be also considered as a "more recursive" variant of A057501 or A057503 or A057161.

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees--History of Combinatorial Generation, vi+120pp. ISBN 0-321-33570-8 Addison-Wesley Professional; 1ST edition (Feb 06, 2006).

Crossrefs

Inverse: A057506.
The 2nd, 3rd, 4th, 5th and 6th "power": A071661, A071663, A071665, A071667, A071669.
Other related permutations: A057501, A057503, A057161.
Cycle counts: A057507. Maximum cycle lengths: A057545. LCM's of all cycles: A060114. See A057501 for other Maple procedures.
Row 17 of table A122288.
Cf. A080981 (the "primitive elements" of this automorphism), A079438, A079440, A079442, A079444, A080967, A080968, A080972, A080272, A080292, A083929, A080973, A081164, A123050, A125977, A126312.

Programs

  • Maple
    map(CatalanRankGlobal,map(DonagheysM, A014486)); or map(CatalanRankGlobal,map(DeepRotateTriangularization, A014486));
    DonagheysM := n -> pars2binexp(DonagheysMP(binexp2pars(n)));
    DonagheysMP := h -> `if`((0 = nops(h)),h,[op(DonagheysMP(car(h))),DonagheysMP(cdr(h))]);
    DeepRotateTriangularization := proc(nn) local n,s,z,w; n := binrev(nn); z := 0; w := 0; while(1 = (n mod 2)) do s := DeepRotateTriangularization(BinTreeRightBranch(n))*2; z := z + (2^w)*s; w := w + binwidth(s); z := z + (2^w); w := w + 1; n := floor(n/2); od; RETURN(z); end;

Formula

a(0) = 0, and for n>=1, a(n) = A085201(a(A072771(n)), A057548(a(A072772(n)))). [This recurrence reflects the S-expression implementation given first in the Program section: A085201 is a 2-ary function corresponding to 'append', A072771 and A072772 correspond to 'car' and 'cdr' (known also as first/rest or head/tail in some languages), and A057548 corresponds to unary form of function 'list'].
As a composition of related permutations:
a(n) = A057164(A057163(n)).
a(n) = A057163(A057506(A057163(n))).

A057506 Signature-permutation of a Catalan Automorphism: (inverse of) "Donaghey's map M", acting on the parenthesizations encoded by A014486.

Original entry on oeis.org

0, 1, 3, 2, 8, 6, 7, 5, 4, 22, 19, 20, 15, 14, 21, 16, 18, 13, 11, 17, 12, 10, 9, 64, 60, 61, 52, 51, 62, 53, 55, 41, 39, 54, 40, 38, 37, 63, 56, 57, 43, 42, 59, 47, 50, 36, 33, 48, 34, 29, 28, 58, 44, 49, 35, 30, 46, 32, 27, 25, 45, 31, 26, 24, 23, 196, 191, 192, 178, 177
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Comments

This is inverse of A057505, which is a signature permutation of Catalan automorphism (bijection) known as "Donaghey's map M". See A057505 for more comments, links and references.

Crossrefs

Inverse: A057505.
Cf. A057161, A057162, A057163, A057164, A057501, A057502, A057503, A057504 (for similar signature permutations of simple Catalan automorphisms).
Cf. A057507 (cycle counts).
The 2nd, 3rd, 4th, 5th and 6th "powers" of this permutation: A071662, A071664, A071666, A071668, A071670.
Row 12 of table A122287.

Programs

  • Maple
    map(CatalanRankGlobal,map(DonagheysA057506,CatalanSequences(196))); # Where CatalanSequences(n) gives the terms A014486(0..n).
    DonagheysA057506 := n -> pars2binexp(deepreverse(DonagheysA057505(deepreverse(binexp2pars(n)))));
    DonagheysA057505 := h -> `if`((0 = nops(h)), h, [op(DonagheysA057505(car(h))), DonagheysA057505(cdr(h))]);
    # The following corresponds to automorphism A057164:
    deepreverse := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else [op(deepreverse(cdr(a))), deepreverse(a[1])]; fi; end;
    # The rest of required Maple-functions: see the given OEIS Wiki page.
  • Scheme
    (define (A057506 n) (CatalanRankSexp (*A057506 (CatalanUnrankSexp n))))
    (define (*A057506 bt) (let loop ((lt bt) (nt (list))) (cond ((not (pair? lt)) nt) (else (loop (cdr lt) (cons nt (*A057506 (car lt))))))))
    ;; Functions CatalanRankSexp and CatalanUnrankSexp can be found at OEIS Wiki page.

Formula

a(n) = A057163(A057164(n)).

Extensions

Entry revised by Antti Karttunen, May 30 2017

A057502 Permutation of natural numbers: rotations of non-crossing handshakes encoded by A014486 (to opposite direction of A057501).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 8, 4, 5, 17, 16, 18, 14, 15, 20, 19, 21, 9, 10, 22, 11, 12, 13, 45, 44, 46, 42, 43, 48, 47, 49, 37, 38, 50, 39, 40, 41, 54, 53, 55, 51, 52, 57, 56, 58, 23, 24, 59, 25, 26, 27, 61, 60, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 129, 128, 130, 126, 127
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Comments

In A057501 and A057502, the cycles between (A014138(n-1)+1)-th and (A014138(n))-th term partition A000108(n) objects encoded by the corresponding terms of A014486 into A002995(n+1) equivalence classes of planar trees, thus the latter sequence can be produced also with Maple procedure RotHandshakesPermutationCycleCounts given below.

Crossrefs

Inverse of A057501 and the car/cdr-flipped conjugate of A069774, i.e. A057502(n) = A057163(A069774(A057163(n))). Cf. also A057507, A057510, A057513, A069771, A069772.

Programs

  • Maple
    map(CatalanRankGlobal,map(RotateHandshakesR, A014486));
    RotateHandshakesR := n -> pars2binexp(deepreverse(RotateHandshakesP(deepreverse(binexp2pars(n)))));
    deepreverse := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else [op(deepreverse(cdr(a))), deepreverse(a[1])]; fi; end;
    with(group); CountCycles := b -> (nops(convert(b,'disjcyc')) + (nops(b)-convert(map(nops,convert(b,'disjcyc')),`+`)));
    RotHandshakesPermutationCycleCounts := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,RotateHandshakes(CatalanUnrank(n,r)))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;
    # For other procedures, follow A057501.

A057513 Number of separate orbits to which permutations given in A057511/A057512 (induced by deep rotation of general parenthesizations/plane trees) partition each A000108(n) objects encoded by A014486 between (A014138(n-1)+1)-th and (A014138(n))-th terms.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 56, 153, 451, 1357, 4212, 13308, 42898, 140276, 465324, 1561955, 5300285, 18156813, 62732842, 218405402, 765657940
Offset: 0

Views

Author

Antti Karttunen Sep 03 2000

Keywords

Comments

It is much faster to compute this sequence empirically with the given C-program than to calculate the terms with the formula in its present form.

Crossrefs

CountCycles given in A057502, for other procedures, follow A057511 and A057501.
Similarly generated sequences: A001683, A002995, A003239, A038775, A057507. Cf. also A000081.
Occurs for first time in A073201 as row 12. Cf. A057546 and also A000081.

Programs

  • Maple
    A057513 := proc(n) local i; `if`((0=n),1,(1/A003418(n-1))*add(A079216bi(n,i),i=1..A003418(n-1))); end;
    # Or empirically:
    DeepRotatePermutationCycleCounts := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,DeepRotateL(CatalanUnrank(n,r)))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;

Formula

a(0)=1, a(n) = (1/A003418(n-1))*Sum_{i=1..A003418(n-1)} A079216(n, i) [Needs improvement.] - Antti Karttunen, Jan 03 2003

A073201 Array of cycle count sequences for the table A073200.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 7, 4, 1, 1, 1, 22, 11, 3, 1, 1, 1, 66, 31, 7, 2, 1, 1, 1, 217, 96, 22, 4, 3, 1, 1, 1, 715, 305, 66, 11, 7, 2, 1, 1, 1, 2438, 1007, 217, 30, 22, 4, 2, 2, 1, 1, 8398, 3389, 715, 93, 66, 11, 3, 5, 1, 1, 1, 29414, 11636, 2438, 292, 217, 30, 6, 14, 2, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row of this table gives the counts of separate orbits/cycles to which the Catalan bijection given in the corresponding row of A073200 partitions each A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.
Note that for involutions (self-inverse Catalan bijections) this is always (A000108(n)+Affffff(n))/2, where Affffff is the corresponding "fix-count sequence" from the table A073202.

Crossrefs

Only the first known occurrence(s) given (marked with ? if not yet proved/unclear): rows 0, 2, 4, etc.: A007595, Row 1: A073191, Rows 6 (& 8): A073431, Row 7: A000108, Rows 12, 14, 20, ...: A057513, Rows 16, 18, ...: A003239, Row 57, ..., 164: A007123, Row 168: A073193, Row 261: A002995, Row 2614: A057507, Row 2618 (?), row 17517: A001683.

A057545 Maximum cycle size in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.

Original entry on oeis.org

1, 1, 2, 3, 6, 6, 24, 72, 144, 147, 588, 672, 2136, 10152, 11520, 29484, 117936, 270576, 656352, 2062368, 4040160
Offset: 0

Views

Author

Antti Karttunen, Sep 07 2000

Keywords

Comments

For the convenience of the range notation above, we define A014137(-1) and A014138(-1) as zero.
Equal to the degree of the polynomials M_n(x) Donaghey gives on the page 81 of his paper.
Factored terms: 1, 1, 2, 3, 2*3, 2*3, 2^3 * 3, 2^3 * 3^2, 2^4 * 3^2, 3 * 7^2, 2^2 * 3 * 7^2, 2^5 * 3 * 7, 2^3 * 3 * 89, 2^3 * 3^3 * 47, 2^8 * 3^2 * 5, 2^2 * 3^4 * 7 * 13, 2^4 * 3^4 * 7 * 13, 2^4 * 3^2 * 1879, 2^5 * 3^2 * 43 * 53, 2^5 * 3^3 * 7 * 11 * 31, 2^5 * 3 * 5 * 19 * 443

Crossrefs

Occurs for first time in A073203 as row 2614.

A060114 Least common multiple of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.

Original entry on oeis.org

1, 1, 2, 6, 6, 30, 120, 720, 15120, 1164240, 15135120, 283931716867999200, 14510088480716327580681600, 3280681990411073806237542217555200, 936436634805345771521186435213604447980767985241556128000
Offset: 0

Views

Author

Antti Karttunen, Mar 01 2001

Keywords

Comments

For the convenience of the range notation above, we define A014137(-1) and A014138(-1) as zero.
This sequence grows so fast that it seems hopeless to count A057507 with Burnside's (orbit-counting) lemma.

Crossrefs

Occurs for first time in A073204 as row 2614.

A081150 Number of even cycles in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.

Original entry on oeis.org

0, 0, 1, 1, 3, 6, 18, 37, 95, 212, 528, 1226, 2936, 6822, 16212, 38081, 90717, 215414, 516358
Offset: 0

Views

Author

Wouter Meeussen and Antti Karttunen, Mar 10 2003

Keywords

Comments

For the convenience of the range notation above, we define A014137(-1) and A014138(-1) as zero.

Crossrefs

Formula

a(n) = A081157(n) + A081160(n) + A081162(n) = A057507(n) - A081148(n).

A081148 Number of odd cycles in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.

Original entry on oeis.org

1, 1, 0, 1, 0, 4, 0, 9, 0, 24, 0, 62, 0, 162, 0, 447, 0, 1234, 0
Offset: 0

Views

Author

Wouter Meeussen and Antti Karttunen, Mar 10 2003

Keywords

Comments

For the convenience of the range notation above, we define A014137(-1) and A014138(-1) as zero.

Crossrefs

Formula

a(n) = A081153(n) + A081155(n) = A057507(n) - A081150(n).

A081151 Number of even cycles in range [A014137(2n-1)..A014138(2n-1)] of permutation A057505/A057506.

Original entry on oeis.org

0, 1, 3, 18, 95, 528, 2936, 16212, 90717, 516358, 2979992
Offset: 0

Views

Author

Wouter Meeussen and Antti Karttunen, Mar 10 2003

Keywords

Comments

Equal to the number of all cycles in the same range (after n>0).

Crossrefs

Formula

a(n) = A081150(2n) = A081158(n)+A001700(n-1) [where A001700(-1) is taken as 0 here] = A057507(2n) [After n>0].
Showing 1-10 of 14 results. Next