cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A057505 Signature-permutation of a Catalan Automorphism: Donaghey's map M acting on the parenthesizations encoded by A014486.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 5, 6, 4, 22, 21, 18, 20, 17, 13, 12, 15, 19, 16, 10, 11, 14, 9, 64, 63, 59, 62, 58, 50, 49, 55, 61, 57, 46, 48, 54, 45, 36, 35, 32, 34, 31, 41, 40, 52, 60, 56, 43, 47, 53, 44, 27, 26, 29, 33, 30, 38, 39, 51, 42, 24, 25, 28, 37, 23, 196, 195, 190, 194, 189
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Comments

This is equivalent to map M given by Donaghey on page 81 of his paper "Automorphisms on ..." and also equivalent to the transformation procedure depicted in the picture (23) of Donaghey-Shapiro paper.
This can be also considered as a "more recursive" variant of A057501 or A057503 or A057161.

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees--History of Combinatorial Generation, vi+120pp. ISBN 0-321-33570-8 Addison-Wesley Professional; 1ST edition (Feb 06, 2006).

Crossrefs

Inverse: A057506.
The 2nd, 3rd, 4th, 5th and 6th "power": A071661, A071663, A071665, A071667, A071669.
Other related permutations: A057501, A057503, A057161.
Cycle counts: A057507. Maximum cycle lengths: A057545. LCM's of all cycles: A060114. See A057501 for other Maple procedures.
Row 17 of table A122288.
Cf. A080981 (the "primitive elements" of this automorphism), A079438, A079440, A079442, A079444, A080967, A080968, A080972, A080272, A080292, A083929, A080973, A081164, A123050, A125977, A126312.

Programs

  • Maple
    map(CatalanRankGlobal,map(DonagheysM, A014486)); or map(CatalanRankGlobal,map(DeepRotateTriangularization, A014486));
    DonagheysM := n -> pars2binexp(DonagheysMP(binexp2pars(n)));
    DonagheysMP := h -> `if`((0 = nops(h)),h,[op(DonagheysMP(car(h))),DonagheysMP(cdr(h))]);
    DeepRotateTriangularization := proc(nn) local n,s,z,w; n := binrev(nn); z := 0; w := 0; while(1 = (n mod 2)) do s := DeepRotateTriangularization(BinTreeRightBranch(n))*2; z := z + (2^w)*s; w := w + binwidth(s); z := z + (2^w); w := w + 1; n := floor(n/2); od; RETURN(z); end;

Formula

a(0) = 0, and for n>=1, a(n) = A085201(a(A072771(n)), A057548(a(A072772(n)))). [This recurrence reflects the S-expression implementation given first in the Program section: A085201 is a 2-ary function corresponding to 'append', A072771 and A072772 correspond to 'car' and 'cdr' (known also as first/rest or head/tail in some languages), and A057548 corresponds to unary form of function 'list'].
As a composition of related permutations:
a(n) = A057164(A057163(n)).
a(n) = A057163(A057506(A057163(n))).

A057507 Number of cycles in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.

Original entry on oeis.org

1, 1, 1, 2, 3, 10, 18, 46, 95, 236, 528, 1288, 2936, 6984, 16212, 38528, 90717, 216648, 516358, 1240818, 2979992
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Comments

For the convenience of the range notation above, we define A014137(-1) and A014138(-1) as zero.

Crossrefs

a(n) = A081148(n)+A081150(n). Bisections: A081151, A081167. Cf. A057545, A060114, A081164.
Occurs for first time in A073201 as row 2614.

A060114 Least common multiple of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.

Original entry on oeis.org

1, 1, 2, 6, 6, 30, 120, 720, 15120, 1164240, 15135120, 283931716867999200, 14510088480716327580681600, 3280681990411073806237542217555200, 936436634805345771521186435213604447980767985241556128000
Offset: 0

Views

Author

Antti Karttunen, Mar 01 2001

Keywords

Comments

For the convenience of the range notation above, we define A014137(-1) and A014138(-1) as zero.
This sequence grows so fast that it seems hopeless to count A057507 with Burnside's (orbit-counting) lemma.

Crossrefs

Occurs for first time in A073204 as row 2614.

A057543 Maximum cycle length (orbit size) in the rotation permutation of 2n non-crossing handshakes.

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124
Offset: 0

Views

Author

Antti Karttunen, Sep 07 2000

Keywords

Comments

That is, in permutations A057501 and A057502, the longest cycle among all cycles between the (A014138(n-2)+1)th and (A014138(n-1))th terms.

Crossrefs

Formula

a(0)=1, a(1)=1, a(2)=2, a(3)=3, and a(n)=2*n for n>=4.

Extensions

More terms from Sean A. Irvine, Jun 13 2022

A057544 Maximum cycle length (orbit size) in the rotation permutation of n+2 side polygon triangularizations.

Original entry on oeis.org

1, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68
Offset: 0

Views

Author

Antti Karttunen, Sep 07 2000

Keywords

Comments

I.e., in permutations A057161 and A057162 (also A057503 and A057504), the longest cycle among all cycles between the (A014138(n-2)+1)-th and (A014138(n-1))-th terms.

Crossrefs

Programs

Formula

a(0)=1, a(1)=1, a(2)=2, a(n)=n+2.
From Chai Wah Wu, Jul 28 2022: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 4.
G.f.: (-2*x^4 + 2*x^3 + x^2 - x + 1)/(x - 1)^2. (End)

Extensions

More terms from Sean A. Irvine, Jun 13 2022

A057542 Maximum cycle length in each permutation between A038776(1) and A038776(A000108(n)).

Original entry on oeis.org

1, 1, 1, 3, 4, 16, 87, 202, 607, 1441, 4708, 41888, 44741, 339108, 1617551
Offset: 0

Views

Author

Antti Karttunen, Sep 07 2000

Keywords

Crossrefs

Cycle lengths of permutation A038776 given in A038774.
LCM's of all cycles: A060113.

Programs

  • Maple
    map(lmax,Bf2DfBinTreePermutationCycleLengths(some_value)); (e.g. 10)
    bf2df := s -> (btbf2df(binrev(s),0,1)/2); # btbf2df and binrev given in A038776
    Bf2DfBinTreePermutationCycleLengths := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,bf2df(CatalanUnrank(n,r)))]; od; a := [op(a),CycleLengths1(b)]; od; RETURN(a); end;
    CycleLengths1 := b -> [[(nops(b)-convert(map(nops,convert(b,'disjcyc')),`+`)),`*`,1],op(map(nops,convert(b,'disjcyc')))];
    last_term := proc(l) local n: n := nops(l); if(0 = n) then ([]) else (op(n,l)): fi: end:
    lmax := proc(a) local e,z; z := 0; for e in a do if whattype(e) = list then e := last_term(e); fi; if e > z then z := e; fi; od; RETURN(z); end;

Extensions

a(11)-a(14) from Sean A. Irvine, Jun 13 2022

A073203 Array of maximum cycle length sequences for the table A073200.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 6, 2, 2, 1, 1, 2, 2, 2, 8, 2, 3, 2, 1, 1, 2, 2, 2, 10, 2, 6, 4, 1, 1, 1, 2, 2, 2, 12, 2, 8, 8, 1, 2, 1, 1, 2, 2, 2, 14, 2, 10, 16, 1, 4, 1, 1, 1, 2, 2, 2, 16, 2, 12, 32, 1, 8, 2, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row of this table gives the longest cycle/orbit produced by the Catalan bijection (given in the corresponding row of A073200) when it acts on A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Crossrefs

Cf. also A073201, A073202, A073204.
Few EIS-sequences which occur in this table. Only the first known occurrence(s) given:.
Rows 6 and 8: A011782, Row 7: A000012, Row 12, 14: A000793 (shifted right and prepended with 1), Row 261: A057543, Row 2614: A057545, Rows 2618, 17517: A057544.

A089878 Maximum cycle size in range [A014137(n-1)..A014138(n-1)] of permutation A071667/A071668.

Original entry on oeis.org

1, 1, 2, 3, 6, 6, 24, 72, 144, 147, 588, 672, 2136, 10152, 11496, 29484, 117936, 270576, 656352, 2062368, 3184728
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Crossrefs

For the terms a(0)-a(20) differs from A057545 only at n=14 where a(14)=11496 != A057545(14)=11520 and at n=20, where a(20)=3184728 while A057545(20)=4040160.

A212808 Irregular triangle read by rows: row n gives number of cycles of length k in map on Catalan family of size n.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 5, 0, 1, 1, 14, 0, 1, 0, 0, 0, 2, 42, 0, 2, 3, 0, 1, 4, 132, 0, 2, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 429, 0, 2, 7, 0, 0, 28, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2012

Keywords

Comments

Length of n-th row: A057545(n)+1.

Examples

			Triangle begins
  1 1
  1 1
  2 0 1
  5 0 1 1
  14 0 1 0 0 0 2
  42 0 2 3 0 1 4
  132 0 2 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
  429 0 2 7 0 0 28 0 0 1 1 0 0 0 0 1 0 0 0 0 2 0 0 0 1 ...
  ...
		

Crossrefs

Formula

T(n,0) = A000108(n).
T(n,0) = sum_{k>0} k*T(n,k) (see Donaghey, paragraph before (13)).
Showing 1-9 of 9 results.