A057510 Permutation of natural numbers: rotations of the bottom branches of the rooted plane trees encoded by A014486. (to opposite direction of A057509).
0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 10, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 37, 24, 42, 51, 25, 38, 26, 44, 47, 27, 53, 56, 60, 28, 39, 29, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 107, 66, 121, 149, 67
Offset: 0
Keywords
Links
- Index entries for sequences that are permutations of the natural numbers
- A. Karttunen, Gatomorphisms (Includes the complete Scheme program for computing this sequence)
Crossrefs
Programs
-
Maple
# reverse given in A057508, for CountCycles, see A057502, for other procedures, follow A057501. map(CatalanRankGlobal,map(RotateBottomBranchesR, A014486)); RotateBottomBranchesR := n -> pars2binexp(rotateR(binexp2pars(n))); rotateR := a -> reverse(rotateL(reverse(a))); RotBBPermutationCycleCounts := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,RotateBottomBranchesL(CatalanUnrank(n,r)))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end; A003239 := RotBBPermutationCycleCounts(some_value); (e.g. 9. Cf. A057502, A057162)