cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A057163 Signature-permutation of a Catalan automorphism: Reflect a rooted plane binary tree; Deutsch's 1998 involution on Dyck paths.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 6, 5, 4, 22, 21, 20, 18, 17, 19, 16, 15, 13, 12, 14, 11, 10, 9, 64, 63, 62, 59, 58, 61, 57, 55, 50, 49, 54, 48, 46, 45, 60, 56, 53, 47, 44, 52, 43, 41, 36, 35, 40, 34, 32, 31, 51, 42, 39, 33, 30, 38, 29, 27, 26, 37, 28, 25, 24, 23, 196, 195, 194, 190, 189
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2000

Keywords

Comments

Deutsch shows in his 1999 paper that this automorphism maps the number of doublerises of Dyck paths to number of valleys and height of the first peak to the number of returns, i.e., that A126306(n) = A127284(a(n)) and A126307(n) = A057515(a(n)) hold for all n.
The A000108(n-2) n-gon triangularizations can be reflected over n axes of symmetry, which all can be generated by appropriate compositions of the permutations A057161/A057162 and A057163.
Composition with A057164 gives signature permutation for Donaghey's Map M (A057505/A057506). Embeds into itself in scale n:2n+1 as a(n) = A083928(a(A080298(n))). A127302(a(n)) = A127302(n) and A057123(A057163(n)) = A057164(A057123(n)) hold for all n.

Examples

			This involution (self-inverse permutation) of natural numbers is induced when we reflect the rooted plane binary trees encoded by A014486. E.g., we have A014486(5) = 44 (101100 in binary), A014486(7) = 52 (110100 in binary) and these encode the following rooted plane binary trees, which are reflections of each other:
    0   0             0   0
     \ /               \ /
      1   0         0   1
       \ /           \ /
    0   1             1   0
     \ /               \ /
      1                 1
thus a(5)=7 and a(7)=5.
		

Crossrefs

This automorphism conjugates between the car/cdr-flipped variants of other automorphisms, e.g., A057162(n) = a(A057161(a(n))), A069768(n) = a(A069767(a(n))), A069769(n) = a(A057508(a(n))), A069773(n) = a(A057501(a(n))), A069774(n) = a(A057502(a(n))), A069775(n) = a(A057509(a(n))), A069776(n) = a(A057510(a(n))), A069787(n) = a(A057164(a(n))).
Row 1 of tables A122201 and A122202, that is, obtained with FORK (and KROF) transformation from even simpler automorphism *A069770. Cf. A122351.

Programs

  • Maple
    a(n) = A080300(ReflectBinTree(A014486(n)))
    ReflectBinTree := n -> ReflectBinTree2(n)/2; ReflectBinTree2 := n -> (`if`((0 = n),n,ReflectBinTreeAux(A030101(n))));
    ReflectBinTreeAux := proc(n) local a,b; a := ReflectBinTree2(BinTreeLeftBranch(n)); b := ReflectBinTree2(BinTreeRightBranch(n)); RETURN((2^(A070939(b)+A070939(a))) + (b * (2^(A070939(a)))) + a); end;
    NextSubBinTree := proc(nn) local n,z,c; n := nn; c := 0; z := 0; while(c < 1) do z := 2*z + (n mod 2); c := c + (-1)^n; n := floor(n/2); od; RETURN(z); end;
    BinTreeLeftBranch := n -> NextSubBinTree(floor(n/2));
    BinTreeRightBranch := n -> NextSubBinTree(floor(n/(2^(1+A070939(BinTreeLeftBranch(n))))));
  • Mathematica
    A014486Q[0] = True; A014486Q[n_] := Catch[Fold[If[# < 0, Throw[False], If[#2 == 0, # - 1, # + 1]] &, 0, IntegerDigits[n, 2]] == 0]; tree[n_] := Block[{func, num = Append[IntegerDigits[n, 2], 0]}, func := If[num[[1]] == 0, num = Drop[num, 1]; 0, num = Drop[num, 1]; 1[func, func]]; func]; A057163L[n_] := Function[x, FirstPosition[x, FromDigits[Most@Cases[tree[#] /. 1 -> Reverse@*1, 0 | 1, All, Heads -> True], 2]][[1]] - 1 & /@ x][Select[Range[0, 2^n], A014486Q]]; A057163L[11] (* JungHwan Min, Dec 11 2016 *)

Formula

a(n) = A083927(A057164(A057123(n))).

Extensions

Equivalence with Deutsch's 1998 involution realized Dec 15 2006 and entry edited accordingly by Antti Karttunen, Jan 16 2007

A073200 Number of simple Catalan bijections of type B.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 2, 2, 1, 0, 7, 3, 3, 1, 0, 8, 4, 2, 3, 1, 0, 6, 6, 8, 2, 3, 1, 0, 4, 5, 7, 7, 2, 3, 1, 0, 5, 7, 6, 6, 8, 2, 3, 1, 0, 17, 8, 5, 8, 7, 7, 2, 2, 1, 0, 18, 9, 4, 4, 6, 8, 7, 3, 3, 1, 0, 20, 10, 22, 5, 5, 5, 8, 4, 2, 2, 1, 0, 21, 14, 21, 17, 4, 4, 6, 5, 8, 3, 3, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row is a permutation of nonnegative integers induced by a Catalan bijection (constructed as explained below) acting on the parenthesizations/plane binary trees as encoded and ordered by A014486/A063171.
The construction process is akin to the constructive mapping of primitive recursive functions to N: we have two basic primitives, A069770 (row 0) and A072796 (row 1), of which the former swaps the left and the right subtree of a binary tree and the latter exchanges the positions of the two leftmost subtrees of plane general trees, unless the tree's degree is less than 2, in which case it just fixes it. From then on, the even rows are constructed recursively from any other Catalan bijection in this table, using one of the five allowed recursion types:
0 - Apply the given Catalan bijection and then recurse down to both subtrees of the new binary tree obtained. (last decimal digit of row number = 2)
1 - First recurse down to both subtrees of the old binary tree and only after that apply the given Catalan bijection. (last digit = 4)
2 - Apply the given Catalan bijection and then recurse down to the right subtree of the new binary tree obtained. (last digit = 6)
3 - First recurse down to the right subtree of old binary tree and only after that apply the given Catalan bijection. (last digit = 8)
4 - First recurse down to the left subtree of old binary tree, after that apply the given Catalan bijection and then recurse down to the right subtree of the new binary tree. (last digit = 0)
The odd rows > 2 are compositions of the rows 0, 1, 2, 4, 6, 8, ... (i.e. either one of the primitives A069770 or A072796, or one of the recursive compositions) at the left hand side and any Catalan bijection from the same array at the right hand side. See the scheme-functions index-for-recursive-sgtb and index-for-composed-sgtb how to compute the positions of the recursive and ordinary compositions in this table.

Crossrefs

Four other tables giving the corresponding cycle-counts: A073201, counts of the fixed elements: A073202, the lengths of the largest cycles: A073203, the LCM's of all the cycles: A073204. The ordinary compositions are encoded using the N X N -> N bijection A054238 (which in turn uses the bit-interleaving function A000695).
The first 21 rows of this table:.
Row 0: A069770. Row 1: A072796. Row 2: A057163. Row 3: A073269, Row 4: A057163 (duplicate), Row 5: A073270, Row 6: A069767, Row 7: A001477 (identity perm.), Row 8: A069768, Row 9: A073280.
Row 10: A069770 (dupl.), Row 11: A072796 (dupl.), Row 12: A057511, Row 13: A073282, Row 14: A057512, Row 15: A073281, Row 16: A057509, Row 17: A073280 (dupl.), Row 18: A057510, Row 19: A073283, Row 20: A073284.
Other Catalan bijection-induced EIS-permutations which occur in this table. Only the first known occurrence is given. Involutions are marked with *, others paired with their inverse:.
Row 164: A057164*, Row 168: A057508*, Row 179: A072797*.
Row 41: A073286 - Row 69: A073287. Row 105: A073290 - Row 197: A073291. Row 416: A073288 - Row 696: A073289.
Row 261: A057501 - Row 521: A057502. Row 2618: A057503 - Row 5216: A057504. Row 2614: A057505 - Row 5212: A057506.
Row 10435: A073292 - Row ...: A073293. Row 17517: A057161 - Row ...: A057162.
For a more practical enumeration system of (some) Catalan automorphisms see table A089840 and its various "recursive derivations".

A122204 Signature permutations of ENIPS-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 10, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 06 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "ENIPS". In this recursion scheme the algorithm first recurses down to the right-hand side branch of the binary tree, before the given automorphism is applied at its root. This corresponds to the fold-right operation applied to the Catalan structure, interpreted e.g. as a parenthesization or a Lisp-like list, where (lambda (x y) (f (cons x y))) is the binary function given to fold, with 'f' being the given automorphism. The associated Scheme-procedures ENIPS and !ENIPS can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122203.
Because of the "universal property of folds", the recursion scheme ENIPS has a well-defined inverse, that is, it acts as a bijective mapping on the set of all Catalan automorphisms. Specifically, if g = ENIPS(f), then (f s) = (g (cons (car s) (g^{-1} (cdr s)))), that is, to obtain an automorphism f which gives g when subjected to recursion scheme ENIPS, we compose g with its own inverse applied to the cdr-branch of a S-expression (i.e. the right subtree in the context of binary trees). This implies that for any non-recursive automorphism f in the table A089840, ENIPS^{-1}(f) is also in A089840, which in turn implies that the rows of table A089840 form a (proper) subset of the rows of this table.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069768, 2: A057510, 3: A130342, 4: A130348, 5: A130346, 6: A130344, 7: A122282, 8: A082340, 9: A130354, 10: A130352, 11: A130350, 12: A057502, 13: A130364, 14: A130366, 15: A069770, 16: A130368, 17: A074686, 18: A130356, 19: A130358, 20: A130362, 21: A130360. Other rows: row 169: A089859, row 253: A123718, row 3608: A129608, row 3613: A072796, row 65167: A074679, row 79361: A123716.

A072796 Self-inverse permutation of natural numbers induced by the Catalan bijection swapping the two leftmost subtrees in the general tree context of the parenthesizations encoded by A014486. See illustrations in the comments.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 14, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 24, 25, 26, 27, 37, 38, 42, 44, 47, 51, 53, 56, 60, 28, 29, 39, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 0

Views

Author

Antti Karttunen, Jun 12 2002

Keywords

Comments

This bijection effects the following transformation on the unlabeled rooted plane general trees (letters A, B, C, etc. refer to arbitrary subtrees located on those vertices):
A A A B B A A B C B A C
| --> | \ / --> \ / \ | / --> \ | /
| | \./ \./ \|/ \|/ etc.
I.e., it keeps "planted" (root degree = 1) trees intact, and swaps the two leftmost toplevel subtrees of the general trees that have a root degree > 1.
On the level of underlying binary trees that general trees map to (see, e.g., 1967 paper by N. G. De Bruijn and B. J. M. Morselt, or consider lists vs. dotted pairs in Lisp programming language), this bijection effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node).
B C A C
\ / \ /
A x --> B x A () A ()
\ / \ / \ / --> \ /
x x x x
(a . (b . c)) -> (b . (a . c)) (a . ()) ---> (a . ())
Note that the first clause corresponds to what is called "generator pi_0" in Thompson's group V. (See also A074679, A089851 and A154121 for other related generators.)
Look at the example section to see how this will produce the given sequence of integers.
Applying this permutation recursively down the right hand side branch of the binary trees (or equivalently, along the topmost level of the general trees) produces permutations A057509 and A057510 (that occur at the same index 2 in tables A122203 and A122204) that effect "shallow rotation" on general trees and parenthesizations. Applying it recursively down the both branches of binary trees (as in pre- or postorder traversal) produces A057511 and A057512 (that occur at the same index 2 in tables A122201 and A122201) that effect "deep rotation" on general trees and parenthesizations.
For this permutation, A127301(a(n)) = A127301(n) for all n, which in turn implies A129593(a(n)) = A129593(n) for all n, likewise for all such recursively generated bijections as A057509 - A057512. Compare also to A072797.

Examples

			To obtain the signature permutation, we apply these transformations to the binary trees as encoded and ordered by A014486 and for each n, a(n) will be the position of the tree to which the n-th tree is transformed to, as follows:
.
                   one tree of one internal
  empty tree         (non-leaf) node
      x                      \/
n=    0                      1
a(n)= 0                      1               (both are always fixed)
.
the next 7 trees, with 2-3 internal nodes, in range [A014137(1), A014137(2+1)-1] = [2,8] are:
.
                          \/     \/                 \/     \/
       \/     \/         \/       \/     \/ \/     \/       \/
      \/       \/       \/       \/       \_/       \/       \/
n=     2        3        4        5        6        7        8
.
and the new shapes after swapping the two subtrees in positions marked "A" and "B" in the diagram given in the comments are:
.
                          \/               \/       \/     \/
       \/     \/         \/     \/ \/       \/     \/       \/
      \/       \/       \/       \_/       \/       \/       \/
a(n)=  2        3        4        6        5        7        5
thus we obtain the first nine terms of this sequence: 0, 1, 2, 3, 4, 6, 5, 7, 8.
		

Crossrefs

Row 2 of A089840. Row 3613 of A122203 and row 3617 of A122204.
Fixed point counts and cycle counts are given in A073190 and A073191.

Extensions

Comment section edited and Examples added by Antti Karttunen, Jan 26 2024

A003239 Number of rooted planar trees with n non-root nodes: circularly cycling the subtrees at the root gives equivalent trees.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 80, 246, 810, 2704, 9252, 32066, 112720, 400024, 1432860, 5170604, 18784170, 68635478, 252088496, 930138522, 3446167860, 12815663844, 47820447028, 178987624514, 671825133648, 2528212128776, 9536895064400, 36054433810102, 136583761444364, 518401146543812
Offset: 0

Views

Author

Keywords

Comments

Also number of necklaces with 2*n beads, n white and n black (to get the correspondence, start at root, walk around outside of tree, use white if move away from the root, black if towards root).
Also number of terms in polynomial expression for permanent of generic circulant matrix of order n.
a(n) is the number of equivalence classes of n-compositions of n under cyclic rotation. (Given a necklace, split it into runs of white followed by a black bead and record the lengths of the white runs. This gives an n-composition of n.) a(n) is the number of n-multisets in Z mod n whose sum is 0. - David Callan, Nov 05 2003
a(n) is the number of cyclic equivalence classes of triangulations of a once-punctured n-gon. - Esther Banaian, May 06 2025

Examples

			As _David Callan_ said, a(n) is the number of n-multisets in Z mod n whose sum is 0. So for n = 4 the a(4)=10 multisets are (0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 1, 2), (0, 0, 2, 2), (2, 2, 2, 2), (0, 0, 1, 3), (1, 2, 2, 3), (1, 1, 3, 3), (0, 2, 3, 3) and (3, 3, 3, 3). - _Boas Bakker_, Apr 21 2025
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 305 (see R(x)).
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973; page 80, Problem 3.13.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(b).

Crossrefs

Column k=2 of A208183.
Column k=1 of A261494.

Programs

  • Maple
    with(numtheory): A003239 := proc(n) local t1,t2,d; t2 := divisors(n); t1 := 0; for d in t2 do t1 := t1+phi(n/d)*binomial(2*d,d)/(2*n); od; t1; end;
    spec := [ C, {B=Union(Z,Prod(B,B)), C=Cycle(B)}, unlabeled ]; [seq(combstruct[count](spec, size=n), n=0..40)];
  • Mathematica
    a[n_] := Sum[ EulerPhi[n/k]*Binomial[2k, k]/(2n), {k, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 11 2012 *)
  • PARI
    C(n, k)=binomial(n,k);
    a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d, d)) / (2*n) );
    /* or, second formula: */
    /* a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d-1,d)) / n ); */
    /* Joerg Arndt, Oct 21 2012 */
    
  • SageMath
    def A003239(n):
        if n == 0: return 1
        return sum(euler_phi(n/d)*binomial(2*d, d)/(2*n) for d in divisors(n))
    print([A003239(n) for n in (0..29)]) # Peter Luschny, Dec 10 2020

Formula

a(n) = Sum_{d|n} (phi(n/d)*binomial(2*d, d))/(2*n) for n > 0.
a(n) = (1/n)*Sum_{d|n} (phi(n/d)*binomial(2*d-1, d)) for n > 0.
a(n) = A047996(2*n, n). - Philippe Deléham, Jul 25 2006
a(n) ~ 2^(2*n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

Extensions

Sequence corrected and extended by Roderick J. Fletcher (yylee(AT)mail.ncku.edu.tw), Aug 1997
Additional comments from Michael Somos

A122285 Signature permutations of ENIPS-transformations of Catalan automorphisms in table A122203.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 18, 11, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 20 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th automorphism in the table A122203 with the recursion scheme "ENIPS", or equivalently row n is obtained as ENIPS(SPINE(n-th row of A089840)). See A122203 and A122204 for the description of SPINE and ENIPS. Each row occurs only once in this table. Inverses of these permutations can be found in table A122286. This table contains also all the rows of A122204 and A089840.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A082348, 2: A057508, 3: A131141, 4: A131143, 5: A131145, 6: A131147, 7: A131173, 8: A131169, 9: A131149, 10: A131151, 11: A131153, 12: A131171, 13: A131155, 14: A131157, 15: A131159, 16: A131161, 17: A057503, 18: A131163, 19: A131165, 20: A131167, 21: A069768. Other rows: row 251: A130360, 3608: A130339, 3613: A057510, 65352: A074686.
See also tables A089840, A122200, A122201-A122204, A122283-A122284, A122286-A122288, A122289-A122290, A130400-A130403. As a sequence differs from A122286 for the first time at n=92, where a(n)=18, while A122286(n)=17.

A057502 Permutation of natural numbers: rotations of non-crossing handshakes encoded by A014486 (to opposite direction of A057501).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 8, 4, 5, 17, 16, 18, 14, 15, 20, 19, 21, 9, 10, 22, 11, 12, 13, 45, 44, 46, 42, 43, 48, 47, 49, 37, 38, 50, 39, 40, 41, 54, 53, 55, 51, 52, 57, 56, 58, 23, 24, 59, 25, 26, 27, 61, 60, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 129, 128, 130, 126, 127
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Comments

In A057501 and A057502, the cycles between (A014138(n-1)+1)-th and (A014138(n))-th term partition A000108(n) objects encoded by the corresponding terms of A014486 into A002995(n+1) equivalence classes of planar trees, thus the latter sequence can be produced also with Maple procedure RotHandshakesPermutationCycleCounts given below.

Crossrefs

Inverse of A057501 and the car/cdr-flipped conjugate of A069774, i.e. A057502(n) = A057163(A069774(A057163(n))). Cf. also A057507, A057510, A057513, A069771, A069772.

Programs

  • Maple
    map(CatalanRankGlobal,map(RotateHandshakesR, A014486));
    RotateHandshakesR := n -> pars2binexp(deepreverse(RotateHandshakesP(deepreverse(binexp2pars(n)))));
    deepreverse := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else [op(deepreverse(cdr(a))), deepreverse(a[1])]; fi; end;
    with(group); CountCycles := b -> (nops(convert(b,'disjcyc')) + (nops(b)-convert(map(nops,convert(b,'disjcyc')),`+`)));
    RotHandshakesPermutationCycleCounts := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,RotateHandshakes(CatalanUnrank(n,r)))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;
    # For other procedures, follow A057501.

A057508 Self-inverse permutation of natural numbers induced by the function 'reverse' (present in programming languages like Lisp, Scheme, Prolog and Haskell) when it acts on symbolless S-expressions encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 11, 16, 19, 10, 15, 12, 17, 18, 13, 20, 21, 22, 23, 37, 28, 42, 51, 25, 39, 30, 44, 47, 33, 53, 56, 60, 24, 38, 29, 43, 52, 26, 40, 31, 45, 46, 32, 48, 49, 50, 27, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 107, 79, 121, 149, 70
Offset: 0

Views

Author

Antti Karttunen Sep 03 2000

Keywords

Crossrefs

The car/cdr-flipped conjugate of A069769, i.e. A057508(n) = A057163(A069769(A057163(n))). Cf. also A057164, A057509, A057510, A033538.

Programs

  • Maple
    Similar function for Maple lists can be implemented as: reverse := proc(a) if 0 = nops(a) then (a) else [op(reverse(cdr(a))),a[1]]; fi; end;

A057512 Permutation of natural numbers: rotations of all branches of the rooted plane trees encoded by A014486. (to opposite direction of A057511).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 10, 16, 19, 11, 15, 12, 17, 20, 13, 18, 21, 22, 23, 37, 24, 42, 51, 25, 38, 26, 44, 53, 27, 47, 56, 60, 28, 39, 29, 43, 52, 30, 40, 31, 45, 54, 34, 46, 57, 61, 33, 41, 32, 48, 55, 35, 49, 58, 62, 36, 50, 59, 63, 64, 65, 107, 66, 121, 149, 67
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Crossrefs

Inverse permutation: A057511. Cycle counts: A057513.

Programs

  • Maple
    # See A057510 for rotateR, A057501 for other procedures.
    map(CatalanRankGlobal,map(DeepRotateR, A014486));
    DeepRotateR := n -> pars2binexp(deeprotateR(binexp2pars(n)));
    deeprotateR := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else rotateR(map(deeprotateR,a)); fi; end;

A127301 Matula-Goebel signatures for plane general trees encoded by A014486.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 6, 7, 5, 16, 12, 12, 14, 10, 12, 9, 14, 19, 13, 10, 13, 17, 11, 32, 24, 24, 28, 20, 24, 18, 28, 38, 26, 20, 26, 34, 22, 24, 18, 18, 21, 15, 28, 21, 38, 53, 37, 26, 37, 43, 29, 20, 15, 26, 37, 23, 34, 43, 67, 41, 22, 29, 41, 59, 31, 64, 48, 48, 56, 40, 48, 36
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This sequence maps A000108(n) oriented (plane) rooted general trees encoded in range [A014137(n-1)..A014138(n)] of A014486 to A000081(n+1) distinct non-oriented rooted general trees, encoded by their Matula-Goebel numbers. The latter encoding is explained in A061773.
A005517 and A005518 give the minimum and maximum value occurring in each such range.
Primes occur at positions given by A057548 (not in order, and with duplicates), and similarly, semiprimes, A001358, occur at positions given by A057518, and in general, A001222(a(n)) = A057515(n).
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127301(SP(n)) = A127301(n) for all n, then it preserves the non-oriented form of a general tree, which implies also that it is Łukasiewicz-word permuting, satisfying A129593(SP(n)) = A129593(n) for all n >= 0. Examples of such automorphisms include A072796, A057508, A057509/A057510, A057511/A057512, A057164, A127285/A127286 and A127287/A127288.
A206487(n) tells how many times n occurs in this sequence. - Antti Karttunen, Jan 03 2013

Examples

			A000081(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, A014486(5) = 44 (= 101100 in binary = A063171(5)), encodes the following plane tree:
.....o
.....|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(1) * A000040(A000040(1)) = 2*3 = 6, thus a(5)=6.
Likewise, A014486(6) = 50 (= 110010 in binary = A063171(6)) encodes the plane tree:
.o
.|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(A000040(1)) * A000040(1) = 3*2 = 6, thus a(6) is also 6, which shows these two trees are identical if one ignores their orientation.
		

Crossrefs

a(A014138(n)) = A007097(n+1), a(A014137(n)) = A000079(n+1) for all n.
a(|A106191(n)|) = A033844(n-1) for all n >= 1.
For standard instead of binary encoding we have A358506.
A000108 counts ordered rooted trees, unordered A000081.
A014486 lists binary encodings of ordered rooted trees.

Programs

  • Mathematica
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    binbalQ[n_]:=n==0||With[{dig=IntegerDigits[n,2]},And@@Table[If[k==Length[dig],SameQ,LessEqual][Count[Take[dig,k],0],Count[Take[dig,k],1]],{k,Length[dig]}]];
    bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]];
    Table[mgnum[bint[n]],{n,Select[Range[0,1000],binbalQ]}] (* Gus Wiseman, Nov 22 2022 *)
  • Scheme
    (define (A127301 n) (*A127301 (A014486->parenthesization (A014486 n)))) ;; A014486->parenthesization given in A014486.
    (define (*A127301 s) (if (null? s) 1 (fold-left (lambda (m t) (* m (A000040 (*A127301 t)))) 1 s)))

Formula

A001222(a(n)) = A057515(n) for all n.
Showing 1-10 of 17 results. Next