cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 91 results. Next

A073202 Array of fix-count sequences for the table A073200.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 2, 8, 1, 0, 1, 1, 0, 20, 0, 0, 0, 1, 1, 5, 60, 2, 0, 1, 0, 1, 1, 0, 181, 0, 0, 0, 0, 0, 1, 1, 14, 584, 5, 0, 2, 0, 1, 2, 1, 1, 0, 1916, 0, 0, 0, 0, 0, 5, 0, 1, 1, 42, 6476, 14, 0, 5, 0, 0, 14, 1, 2, 1, 1, 0, 22210, 0, 0, 0, 0, 0, 42, 0, 1, 0, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row of this table gives the counts of elements fixed by the Catalan bijection (given in the corresponding row of A073200) when it acts on A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Crossrefs

Cf. also A073201, A073203.
Few EIS-sequences which occur in this table. Only the first known occurrence(s) given (marked with ? if not yet proved/unclear):
Rows 0, 2, 4, etc.: "Aerated Catalan numbers" shifted right and prepended with 1 (Cf. A000108), Row 1: A073190, Rows 3, 5, 261, 2614, 2618, 17517, etc: A019590 but with offset 0 instead of 1 (means that the Catalan bijections like A073269, A073270, A057501, A057505, A057503 and A057161 never fix any Catalan structure of size larger than 1).
Row 6: A036987, Row 7: A000108, Rows 12, 14, 20, ...: A057546, Rows 16, 18: A034731, Row 41: A073268, Row 105: essentially A073267, Row 57, ..., 164: A001405, Row 168: A073192, Row 416: essentially A023359 ?, Row 10435: also A036987.

A073201 Array of cycle count sequences for the table A073200.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 7, 4, 1, 1, 1, 22, 11, 3, 1, 1, 1, 66, 31, 7, 2, 1, 1, 1, 217, 96, 22, 4, 3, 1, 1, 1, 715, 305, 66, 11, 7, 2, 1, 1, 1, 2438, 1007, 217, 30, 22, 4, 2, 2, 1, 1, 8398, 3389, 715, 93, 66, 11, 3, 5, 1, 1, 1, 29414, 11636, 2438, 292, 217, 30, 6, 14, 2, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row of this table gives the counts of separate orbits/cycles to which the Catalan bijection given in the corresponding row of A073200 partitions each A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.
Note that for involutions (self-inverse Catalan bijections) this is always (A000108(n)+Affffff(n))/2, where Affffff is the corresponding "fix-count sequence" from the table A073202.

Crossrefs

Only the first known occurrence(s) given (marked with ? if not yet proved/unclear): rows 0, 2, 4, etc.: A007595, Row 1: A073191, Rows 6 (& 8): A073431, Row 7: A000108, Rows 12, 14, 20, ...: A057513, Rows 16, 18, ...: A003239, Row 57, ..., 164: A007123, Row 168: A073193, Row 261: A002995, Row 2614: A057507, Row 2618 (?), row 17517: A001683.

A073203 Array of maximum cycle length sequences for the table A073200.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 6, 2, 2, 1, 1, 2, 2, 2, 8, 2, 3, 2, 1, 1, 2, 2, 2, 10, 2, 6, 4, 1, 1, 1, 2, 2, 2, 12, 2, 8, 8, 1, 2, 1, 1, 2, 2, 2, 14, 2, 10, 16, 1, 4, 1, 1, 1, 2, 2, 2, 16, 2, 12, 32, 1, 8, 2, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row of this table gives the longest cycle/orbit produced by the Catalan bijection (given in the corresponding row of A073200) when it acts on A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Crossrefs

Cf. also A073201, A073202, A073204.
Few EIS-sequences which occur in this table. Only the first known occurrence(s) given:.
Rows 6 and 8: A011782, Row 7: A000012, Row 12, 14: A000793 (shifted right and prepended with 1), Row 261: A057543, Row 2614: A057545, Rows 2618, 17517: A057544.

A073204 Array of LCMs-of-cycle-lengths sequences for the table A073200.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 6, 2, 1, 1, 2, 2, 2, 12, 2, 2, 1, 1, 2, 2, 2, 120, 2, 6, 2, 1, 1, 2, 2, 2, 120, 2, 12, 4, 1, 1, 1, 2, 2, 2, 840, 2, 120, 8, 1, 2, 1, 1, 2, 2, 2, 840, 2, 120, 16, 1, 4, 1, 1, 1, 2, 2, 2, 5040, 2, 840, 32, 1, 8, 2, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row of this table gives the least common multiple of all cycle lengths produced by the Catalan bijection (given in the corresponding row of A073200) when it acts on A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Crossrefs

Cf. also A073201-A073203.
Few EIS-sequences occur in this table. The first known occurrences are: rows 6 and 8: A011782, Row 7: A000012, Row 2614: A060114, Row 2618 (?), ..., 17517: A057544.

A089840 Signature permutations of non-recursive Catalan automorphisms (i.e., bijections of finite plane binary trees, with no unlimited recursion down to indefinite distances from the root), sorted according to the minimum number of opening nodes needed in their defining clauses.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12, 8, 7, 6
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2003; last revised Jan 06 2009

Keywords

Comments

Each row is a permutation of natural numbers and occurs only once. The table is closed with regards to the composition of its rows (see A089839) and it contains the inverse of each (their positions are shown in A089843). The permutations in table form an enumerable subgroup of the group of all size-preserving "Catalan bijections" (bijections among finite unlabeled rooted plane binary trees). The order of each element is shown at A089842.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A072796, 3: A089850, 4: A089851, 5: A089852, 6: A089853, 7: A089854, 8: A072797, 9: A089855, 10: A089856, 11: A089857, 12: A074679, 13: A089858, 14: A073269, 15: A089859, 16: A089860, 17: A074680, 18: A089861, 19: A073270, 20: A089862, 21: A089863.
Other rows: row 83: A154125, row 169: A129611, row 183: A154126, row 251: A129612, row 253: A123503, row 258: A123499, row 264: A123500, row 3608: A129607, row 3613: A129605, row 3617: A129606, row 3655: A154121, row 3656: A154123,row 3702: A082354, row 3747: A154122, row 3748: A154124, row 3886: A082353, row 4069: A082351, row 4207: A089865, row 4253: A082352, row 4299: A089866, row 65167: A129609, row 65352: A129610, row 65518: A123495, row 65796: A123496, row 79361: A123492, row 1653002: A123695, row 1653063: A123696, row 1654023: A073281, row 1654249: A123498, row 1654694: A089864, row 1654720: A129604,row 1655089: A123497, row 1783367: A123713, row 1786785: A123714.
Tables A122200, A122201, A122202, A122203, A122204, A122283, A122284, A122285, A122286, A122287, A122288, A122289, A122290, A130400-A130403 give various "recursive derivations" of these non-recursive automorphisms. See also A089831, A073200.
Index sequences to this table, giving various subgroups or other important constructions: A153826, A153827, A153829, A153830, A123694, A153834, A153832, A153833.

A074679 Signature permutation of a Catalan automorphism: Rotate binary tree left if possible, otherwise swap its sides.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 8, 4, 5, 14, 15, 16, 17, 18, 19, 20, 21, 9, 10, 22, 11, 12, 13, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 23, 24, 59, 25, 26, 27, 60, 61, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 107, 108, 109, 110, 111
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node.)
...B...C.......A...B
....\./.........\./
.A...x....-->....x...C.................A..().........()..A..
..\./.............\./...................\./....-->....\./...
...x...............x.....................x.............x....
(a . (b . c)) -> ((a . b) . c) ____ (a . ()) --> (() . a)
That is, we rotate the binary tree left, in case it is possible and otherwise (if the right hand side of a tree is a terminal node) swap the left and right subtree (so that the terminal node ends to the left hand side), i.e., apply the automorphism *A069770. Look at the example in A069770 to see how this will produce the given sequence of integers.
This is the first multiclause nonrecursive automorphism in table A089840 and the first one whose order is not finite, i.e., the maximum size of cycles in this permutation is not bounded (see A089842). The cycle counts in range [A014137(n-1)..A014138(n)] of this permutation is given by A001683(n+1), which is otherwise the same sequence as for Catalan automorphisms *A057161/*A057162, but shifted once right. For an explanation, please see the notes in OEIS Wiki.

Crossrefs

This automorphism has several variants, where the first clause is same (rotate binary tree to the left, if possible), but something else is done (than just swapping sides), in case the right hand side is empty: A082335, A082349, A123499, A123695. The following automorphisms can be derived recursively from this one: A057502, A074681, A074683, A074685, A074687, A074690, A089865, A120706, A122321, A122332. See also somewhat similar ones: A069773, A071660, A071656, A071658, A072091, A072095, A072093.
Inverse: A074680.
Row 12 of A089840.
Occurs also in A073200 as row 557243 because a(n) = A073283(A073280(A072796(n))). a(n) = A083927(A123498(A057123(n))).
Number of cycles: LEFT(A001683). Number of fixed points: LEFT(A019590). Max. cycle size & LCM of all cycle sizes: A089410 (in range [A014137(n-1)..A014138(n)] of this permutation).

Extensions

Description clarified Oct 10 2006

A074680 Signature permutation of the seventeenth nonrecursive Catalan automorphism in table A089840. (Rotate binary tree right if possible, otherwise swap its sides.)

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 4, 5, 6, 17, 18, 20, 21, 22, 9, 10, 11, 12, 13, 14, 15, 16, 19, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 51, 52, 53, 56, 60, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node.)
A...B..............B...C
.\./................\./
..x...C..-->.....A...x................()..B.......B..()
...\./............\./..................\./...-->...\./.
....x..............x....................x...........x..
((a . b) . c) -> (a . (b . c)) __ (() . b) --> (b . ())
That is, we rotate the binary tree right, in case it is possible and otherwise (if the left hand side of a tree is a terminal node) swap the right and left subtree (so that the terminal node ends to the right hand side), i.e. apply the automorphism *A069770. Look at the example in A069770 to see how this will produce the given sequence of integers.
See also the comments at A074679.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

This automorphism has several variants, where the first clause is same (rotate binary tree to the right, if possible), but something else is done (than just swapping sides), in case the left hand side is empty: A082336, A082350, A123500, A123696. The following automorphisms can be derived recursively from this one: A057501, A074682, A074684, A074686, A074688, A074689, A089866, A120705, A122322, A122331. See also somewhat similar ones: A069774, A071659, A071655, A071657, A072090, A072094, A072092.
Inverse: A074679. Row 17 of A089840. Occurs also in A073200 as row 2156396687 as a(n) = A072796(A073280(A073282(n))). a(n) = A083927(A123497(A057123(n))).
Number of cycles: LEFT(A001683). Number of fixed points: LEFT(A019590). Max. cycle size & LCM of all cycle sizes: A089410 (in range [A014137(n-1)..A014138(n-1)] of this permutation).

Extensions

Description clarified Oct 10 2006

A069768 Signature-permutation of Catalan bijection "Knack".

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 6, 4, 5, 22, 21, 20, 17, 18, 19, 16, 14, 9, 10, 15, 11, 12, 13, 64, 63, 62, 58, 59, 61, 57, 54, 45, 46, 55, 48, 49, 50, 60, 56, 53, 44, 47, 51, 42, 37, 23, 24, 38, 25, 26, 27, 52, 43, 39, 28, 29, 40, 30, 31, 32, 41, 33, 34, 35, 36, 196, 195, 194, 189, 190
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2002; entry revised Dec 20 2008

Keywords

Comments

This automorphism of binary trees first swaps the left and right subtree of the root and then proceeds recursively to the (new) left subtree, to do the same operation there. This is one of those Catalan bijections which extend to a unique automorphism of the infinite binary tree, which in this case is A153142. See further comments there and in A153141.
This bijection, Knack, is a ENIPS-transformation of the simple swap: ENIPS(*A069770) (i.e., row 1 of A122204). Furthermore, Knack and Knick (the inverse, A069767) have a special property, that FORK and KROF transforms (explained in A122201 and A122202) transform them to their own inverses, i.e., to each other: FORK(Knick) = KROF(Knick) = Knack and FORK(Knack) = KROF(Knack) = Knick, thus this occurs also as row 1 in A122288 and naturally, the double-fork fixes both, e.g., FORK(FORK(Knack)) = Knack.
Note: the name in Finnish is "Naks".

References

  • A. Karttunen, paper in preparation.

Crossrefs

Inverse permutation: "Knick", A069767. "n-th powers" (i.e. n-fold applications), from n=2 to 6: A073291, A073293, A073295, A073297, A073299.
In range [A014137(n-1)..A014138(n-1)] of this permutation, the number of cycles is A073431, number of fixed points: A036987 (Fixed points themselves: A084108), Max. cycle size & LCM of all cycle sizes: A011782. See also: A074080.
A127302(a(n)) = A127302(n) for all n. a(n) = A057162(A057508(n)) = A069769(A057162(n))
Row 1 of A122204 and A122288, row 21 of A122285 and A130402, row 8 of A073200.
See also bijections A073287, A082346, A082347, A082350, A130342.

A069767 Signature-permutation of Catalan bijection "Knick".

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 6, 5, 4, 17, 18, 20, 21, 22, 16, 19, 15, 12, 13, 14, 11, 10, 9, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 44, 47, 53, 56, 60, 43, 52, 40, 31, 32, 41, 34, 35, 36, 42, 51, 39, 30, 33, 38, 29, 26, 27, 37, 28, 25, 24, 23, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2002; entry revised Dec 20 2008

Keywords

Comments

This automorphism of binary trees first swaps the left and right subtree of the root and then proceeds recursively to the (new) right subtree, to do the same operation there. This is one of those Catalan bijections which extend to a unique automorphism of the infinite binary tree, which in this case is A153141. See further comments there.
This bijection, Knick, is a SPINE-transformation of the simple swap: SPINE(*A069770) (i.e., row 1 of A122203). Furthermore, Knick and Knack (the inverse, *A069768) have a special property, that FORK and KROF transforms (explained in A122201 and A122202) transform them to their own inverses, i.e., to each other: FORK(Knick) = KROF(Knick) = Knack and FORK(Knack) = KROF(Knack) = Knick, thus this occurs also as a row 1 in A122287 and naturally, the double-fork fixes both, e.g., FORK(FORK(Knick)) = Knick. There are also other peculiar properties.
Note: the name in Finnish is "Niks".

References

  • A. Karttunen, paper in preparation.

Crossrefs

Inverse permutation: "Knack", A069768. "n-th powers" (i.e. n-fold applications), from n=2 to 6: A073290, A073292, A073294, A073296, A073298.
In range [A014137(n-1)..A014138(n-1)] of this permutation, the number of cycles is A073431, number of fixed points: A036987 (Fixed points themselves: A084108), Max. cycle size & LCM of all cycle sizes: A011782. See also: A074080.
A127302(a(n)) = A127302(n) for all n. a(n) = A057508(A057161(n)) = A057161(A069769(n)).
Row 1 of A122203 and A122287, row 15 of A122286 and A130403, row 6 of A073200.
See also bijections A073286, A082345, A082348, A082349, A130341.

A074685 Permutation of natural numbers induced by the Catalan bijection gmA074685! acting on the parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 8, 5, 4, 15, 14, 16, 17, 18, 19, 20, 21, 11, 12, 22, 13, 10, 9, 39, 40, 41, 38, 37, 43, 42, 44, 45, 46, 47, 48, 49, 50, 52, 51, 53, 54, 55, 56, 57, 58, 29, 28, 59, 30, 31, 32, 60, 61, 62, 33, 34, 63, 35, 25, 26, 64, 36, 27, 24, 23, 113, 112, 114, 115, 116
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Crossrefs

Inverse of A074686. a(n) = A057163(A074689(A057163(n))). Occurs in A073200 as row 5572436.
Showing 1-10 of 91 results. Next