cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A073191 Number of separate orbits/cycles to which the Catalan bijections A072796/A072797 partition each A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 96, 305, 1007, 3389, 11636, 40498, 142714, 507870, 1823040, 6591885, 23989419, 87795473, 322922652, 1193058230, 4425547638, 16475756738, 61539293424, 230548633954, 866095934598, 3261868457698, 12313423931624
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Crossrefs

Occurs for first time in A073201 as row 1.

Formula

a(n) = (A000108(n)+A073190(n))/2.

A073282 Permutation of natural numbers induced by the composition of the Catalan bijections A072796 & A057163.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 5, 6, 4, 22, 21, 20, 18, 17, 13, 12, 15, 19, 16, 11, 14, 10, 9, 64, 63, 62, 59, 58, 61, 57, 55, 50, 49, 54, 48, 46, 45, 36, 35, 34, 32, 31, 41, 40, 52, 60, 56, 43, 53, 47, 44, 33, 30, 39, 51, 42, 29, 38, 27, 26, 28, 37, 25, 24, 23, 196, 195, 194, 190, 189
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Crossrefs

Inverse permutation: A073283. Occurs for first time in A073200 as row 13.

Formula

a(n) = A072796(A057163(n))

A073283 Permutation of natural numbers induced by the composition of the Catalan bijections A057163 & A072796.

Original entry on oeis.org

0, 1, 3, 2, 8, 6, 7, 5, 4, 22, 21, 19, 15, 14, 20, 16, 18, 13, 12, 17, 11, 10, 9, 64, 63, 62, 59, 58, 60, 56, 52, 41, 40, 51, 39, 38, 37, 61, 57, 53, 43, 42, 55, 47, 50, 36, 35, 49, 34, 32, 31, 54, 44, 48, 33, 30, 46, 29, 27, 26, 45, 28, 25, 24, 23, 196, 195, 194, 190, 189
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Crossrefs

Inverse permutation: A073282. Occurs for first time in A073200 as row 19.

Formula

a(n) = A057163(A072796(n))

A073281 Self-inverse permutation of natural numbers induced by the composition of the Catalan bijections A072796 and A073269.

Original entry on oeis.org

0, 1, 3, 2, 7, 5, 8, 4, 6, 17, 18, 12, 11, 15, 20, 13, 21, 9, 10, 22, 14, 16, 19, 45, 46, 48, 49, 50, 31, 32, 30, 28, 29, 40, 39, 43, 52, 54, 55, 34, 33, 41, 57, 35, 58, 23, 24, 59, 25, 26, 27, 61, 36, 62, 37, 38, 63, 42, 44, 47, 64, 51, 53, 56, 60, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Crossrefs

Occurs for first time in A073200 as row 15. This is a conjugate of A069770, so the fixed element and the cycle counts are same as for A069770: "Aerated Catalan numbers" and A007595.

Formula

A069770 Signature permutation of the first non-identity, nonrecursive Catalan automorphism in table A089840: swap the top branches of a binary tree. An involution of nonnegative integers.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 6, 4, 5, 17, 18, 20, 21, 22, 16, 19, 14, 9, 10, 15, 11, 12, 13, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 44, 47, 53, 56, 60, 42, 51, 37, 23, 24, 38, 25, 26, 27, 43, 52, 39, 28, 29, 40, 30, 31, 32, 41, 33, 34, 35, 36, 129, 130, 132, 133, 134
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2002

Keywords

Comments

This is the simplest possible Catalan automorphism after the identity bijection (A001477). It effects the following transformation on the unlabeled rooted plane binary trees (letters A and B refer to arbitrary subtrees located on those vectices):
A B B A
\ / --> \ /
x x
(a . b) -----> (b . a)
Applying this permutation recursively to the right hand side branch of the binary trees produces permutations A069767 and A069768 (that occur at the same index 1 in tables A122203 and A122204), and applying this recursively to the both branches of binary trees (as in pre- or postorder traversal) produces A057163 (which occurs at the same index 1 in tables A122201 and A122202) that reflects the whole binary tree.
For this permutation, A127302(a(n)) = A127302(n) for all n, [or equally, A153835(a(n)) = A153835(n)], and likewise for all such recursive derivations as mentioned above.

Examples

			To obtain the signature permutation, we apply these transformations to the binary trees as encoded and ordered by A014486 and for each n, a(n) will be the position of the tree to which the n-th tree is transformed to, as follows:
.
                   one tree of one internal
  empty tree         (non-leaf) node
      x                      \/
n=    0                      1
a(n)= 0                      1               (both are always fixed)
.
the next 7 trees, with 2-3 internal nodes, in range [A014137(1), A014137(2+1)-1] = [2,8] are:
.
                          \/     \/                 \/     \/
       \/     \/         \/       \/     \/ \/     \/       \/
      \/       \/       \/       \/       \_/       \/       \/
n=     2        3        4        5        6        7        8
.
and the new shapes after swapping their left and right hand subtrees are:
.
                        \/     \/                     \/     \/
     \/         \/     \/       \/       \/ \/       \/       \/
      \/       \/       \/       \/       \_/       \/       \/
a(n)=  3        2        7        8        6        4        5
thus we obtain the first nine terms of this sequence: 0, 1, 3, 2, 7, 8, 6, 4, 5.
		

Crossrefs

Row 1 of A089840.
The number of cycles and the number of fixed points in each subrange limited by terms of A014137 are given by A007595 and A097331.
Other related sequences: A014486, A057163, A069767, A069768, A089864, A123492, A154125, A154126.
Cf. also A127302, A153835.

Formula

Extensions

Entry revised by Antti Karttunen, Oct 11 2006 and Mar 30 2024

A073200 Number of simple Catalan bijections of type B.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 2, 2, 1, 0, 7, 3, 3, 1, 0, 8, 4, 2, 3, 1, 0, 6, 6, 8, 2, 3, 1, 0, 4, 5, 7, 7, 2, 3, 1, 0, 5, 7, 6, 6, 8, 2, 3, 1, 0, 17, 8, 5, 8, 7, 7, 2, 2, 1, 0, 18, 9, 4, 4, 6, 8, 7, 3, 3, 1, 0, 20, 10, 22, 5, 5, 5, 8, 4, 2, 2, 1, 0, 21, 14, 21, 17, 4, 4, 6, 5, 8, 3, 3, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row is a permutation of nonnegative integers induced by a Catalan bijection (constructed as explained below) acting on the parenthesizations/plane binary trees as encoded and ordered by A014486/A063171.
The construction process is akin to the constructive mapping of primitive recursive functions to N: we have two basic primitives, A069770 (row 0) and A072796 (row 1), of which the former swaps the left and the right subtree of a binary tree and the latter exchanges the positions of the two leftmost subtrees of plane general trees, unless the tree's degree is less than 2, in which case it just fixes it. From then on, the even rows are constructed recursively from any other Catalan bijection in this table, using one of the five allowed recursion types:
0 - Apply the given Catalan bijection and then recurse down to both subtrees of the new binary tree obtained. (last decimal digit of row number = 2)
1 - First recurse down to both subtrees of the old binary tree and only after that apply the given Catalan bijection. (last digit = 4)
2 - Apply the given Catalan bijection and then recurse down to the right subtree of the new binary tree obtained. (last digit = 6)
3 - First recurse down to the right subtree of old binary tree and only after that apply the given Catalan bijection. (last digit = 8)
4 - First recurse down to the left subtree of old binary tree, after that apply the given Catalan bijection and then recurse down to the right subtree of the new binary tree. (last digit = 0)
The odd rows > 2 are compositions of the rows 0, 1, 2, 4, 6, 8, ... (i.e. either one of the primitives A069770 or A072796, or one of the recursive compositions) at the left hand side and any Catalan bijection from the same array at the right hand side. See the scheme-functions index-for-recursive-sgtb and index-for-composed-sgtb how to compute the positions of the recursive and ordinary compositions in this table.

Crossrefs

Four other tables giving the corresponding cycle-counts: A073201, counts of the fixed elements: A073202, the lengths of the largest cycles: A073203, the LCM's of all the cycles: A073204. The ordinary compositions are encoded using the N X N -> N bijection A054238 (which in turn uses the bit-interleaving function A000695).
The first 21 rows of this table:.
Row 0: A069770. Row 1: A072796. Row 2: A057163. Row 3: A073269, Row 4: A057163 (duplicate), Row 5: A073270, Row 6: A069767, Row 7: A001477 (identity perm.), Row 8: A069768, Row 9: A073280.
Row 10: A069770 (dupl.), Row 11: A072796 (dupl.), Row 12: A057511, Row 13: A073282, Row 14: A057512, Row 15: A073281, Row 16: A057509, Row 17: A073280 (dupl.), Row 18: A057510, Row 19: A073283, Row 20: A073284.
Other Catalan bijection-induced EIS-permutations which occur in this table. Only the first known occurrence is given. Involutions are marked with *, others paired with their inverse:.
Row 164: A057164*, Row 168: A057508*, Row 179: A072797*.
Row 41: A073286 - Row 69: A073287. Row 105: A073290 - Row 197: A073291. Row 416: A073288 - Row 696: A073289.
Row 261: A057501 - Row 521: A057502. Row 2618: A057503 - Row 5216: A057504. Row 2614: A057505 - Row 5212: A057506.
Row 10435: A073292 - Row ...: A073293. Row 17517: A057161 - Row ...: A057162.
For a more practical enumeration system of (some) Catalan automorphisms see table A089840 and its various "recursive derivations".

A089840 Signature permutations of non-recursive Catalan automorphisms (i.e., bijections of finite plane binary trees, with no unlimited recursion down to indefinite distances from the root), sorted according to the minimum number of opening nodes needed in their defining clauses.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12, 8, 7, 6
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2003; last revised Jan 06 2009

Keywords

Comments

Each row is a permutation of natural numbers and occurs only once. The table is closed with regards to the composition of its rows (see A089839) and it contains the inverse of each (their positions are shown in A089843). The permutations in table form an enumerable subgroup of the group of all size-preserving "Catalan bijections" (bijections among finite unlabeled rooted plane binary trees). The order of each element is shown at A089842.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A072796, 3: A089850, 4: A089851, 5: A089852, 6: A089853, 7: A089854, 8: A072797, 9: A089855, 10: A089856, 11: A089857, 12: A074679, 13: A089858, 14: A073269, 15: A089859, 16: A089860, 17: A074680, 18: A089861, 19: A073270, 20: A089862, 21: A089863.
Other rows: row 83: A154125, row 169: A129611, row 183: A154126, row 251: A129612, row 253: A123503, row 258: A123499, row 264: A123500, row 3608: A129607, row 3613: A129605, row 3617: A129606, row 3655: A154121, row 3656: A154123,row 3702: A082354, row 3747: A154122, row 3748: A154124, row 3886: A082353, row 4069: A082351, row 4207: A089865, row 4253: A082352, row 4299: A089866, row 65167: A129609, row 65352: A129610, row 65518: A123495, row 65796: A123496, row 79361: A123492, row 1653002: A123695, row 1653063: A123696, row 1654023: A073281, row 1654249: A123498, row 1654694: A089864, row 1654720: A129604,row 1655089: A123497, row 1783367: A123713, row 1786785: A123714.
Tables A122200, A122201, A122202, A122203, A122204, A122283, A122284, A122285, A122286, A122287, A122288, A122289, A122290, A130400-A130403 give various "recursive derivations" of these non-recursive automorphisms. See also A089831, A073200.
Index sequences to this table, giving various subgroups or other important constructions: A153826, A153827, A153829, A153830, A123694, A153834, A153832, A153833.

A122204 Signature permutations of ENIPS-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 10, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 06 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "ENIPS". In this recursion scheme the algorithm first recurses down to the right-hand side branch of the binary tree, before the given automorphism is applied at its root. This corresponds to the fold-right operation applied to the Catalan structure, interpreted e.g. as a parenthesization or a Lisp-like list, where (lambda (x y) (f (cons x y))) is the binary function given to fold, with 'f' being the given automorphism. The associated Scheme-procedures ENIPS and !ENIPS can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122203.
Because of the "universal property of folds", the recursion scheme ENIPS has a well-defined inverse, that is, it acts as a bijective mapping on the set of all Catalan automorphisms. Specifically, if g = ENIPS(f), then (f s) = (g (cons (car s) (g^{-1} (cdr s)))), that is, to obtain an automorphism f which gives g when subjected to recursion scheme ENIPS, we compose g with its own inverse applied to the cdr-branch of a S-expression (i.e. the right subtree in the context of binary trees). This implies that for any non-recursive automorphism f in the table A089840, ENIPS^{-1}(f) is also in A089840, which in turn implies that the rows of table A089840 form a (proper) subset of the rows of this table.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069768, 2: A057510, 3: A130342, 4: A130348, 5: A130346, 6: A130344, 7: A122282, 8: A082340, 9: A130354, 10: A130352, 11: A130350, 12: A057502, 13: A130364, 14: A130366, 15: A069770, 16: A130368, 17: A074686, 18: A130356, 19: A130358, 20: A130362, 21: A130360. Other rows: row 169: A089859, row 253: A123718, row 3608: A129608, row 3613: A072796, row 65167: A074679, row 79361: A123716.

A122203 Signature permutations of SPINE-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 11, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 06 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "SPINE". In this recursion scheme the given automorphism is first applied at the root of binary tree, before the algorithm recurses down to the new right-hand side branch. The associated Scheme-procedures SPINE and !SPINE can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122204.
The recursion scheme SPINE has a well-defined inverse, that is, it acts as a bijective mapping on the set of all Catalan automorphisms. Specifically, if g = SPINE(f), then (f s) = (cond ((pair? s) (let ((t (g s))) (cons (car t) (g^{-1} (cdr t))))) (else s)) that is, to obtain an automorphism f which gives g when subjected to recursion scheme SPINE, we compose g with its own inverse applied to the cdr-branch of a S-expression. This implies that for any non-recursive automorphism f in the table A089840, SPINE^{-1}(f) is also in A089840, which in turn implies that the rows of table A089840 form a (proper) subset of the rows of this table.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069767, 2: A057509, 3: A130341, 4: A130343, 5: A130345, 6: A130347, 7: A122282, 8: A082339, 9: A130349, 10: A130351, 11: A130353, 12: A074685, 13: A130355, 14: A130357, 15: A130359, 16: A130361, 17: A057501, 18: A130363, 19: A130365, 20: A130367, 21: A069770. Other rows: row 251: A089863, row 253: A123717, row 3608: A129608, row 3613: A072796, row 65352: A074680, row 79361: A123715.

Programs

  • Scheme
    (define (SPINE foo) (letrec ((bar (lambda (s) (let ((t (foo s))) (if (pair? t) (cons (car t) (bar (cdr t))) t))))) bar))
    (define (!SPINE foo!) (letrec ((bar! (lambda (s) (cond ((pair? s) (foo! s) (bar! (cdr s)))) s))) bar!))

A074679 Signature permutation of a Catalan automorphism: Rotate binary tree left if possible, otherwise swap its sides.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 8, 4, 5, 14, 15, 16, 17, 18, 19, 20, 21, 9, 10, 22, 11, 12, 13, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 23, 24, 59, 25, 26, 27, 60, 61, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 107, 108, 109, 110, 111
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node.)
...B...C.......A...B
....\./.........\./
.A...x....-->....x...C.................A..().........()..A..
..\./.............\./...................\./....-->....\./...
...x...............x.....................x.............x....
(a . (b . c)) -> ((a . b) . c) ____ (a . ()) --> (() . a)
That is, we rotate the binary tree left, in case it is possible and otherwise (if the right hand side of a tree is a terminal node) swap the left and right subtree (so that the terminal node ends to the left hand side), i.e., apply the automorphism *A069770. Look at the example in A069770 to see how this will produce the given sequence of integers.
This is the first multiclause nonrecursive automorphism in table A089840 and the first one whose order is not finite, i.e., the maximum size of cycles in this permutation is not bounded (see A089842). The cycle counts in range [A014137(n-1)..A014138(n)] of this permutation is given by A001683(n+1), which is otherwise the same sequence as for Catalan automorphisms *A057161/*A057162, but shifted once right. For an explanation, please see the notes in OEIS Wiki.

Crossrefs

This automorphism has several variants, where the first clause is same (rotate binary tree to the left, if possible), but something else is done (than just swapping sides), in case the right hand side is empty: A082335, A082349, A123499, A123695. The following automorphisms can be derived recursively from this one: A057502, A074681, A074683, A074685, A074687, A074690, A089865, A120706, A122321, A122332. See also somewhat similar ones: A069773, A071660, A071656, A071658, A072091, A072095, A072093.
Inverse: A074680.
Row 12 of A089840.
Occurs also in A073200 as row 557243 because a(n) = A073283(A073280(A072796(n))). a(n) = A083927(A123498(A057123(n))).
Number of cycles: LEFT(A001683). Number of fixed points: LEFT(A019590). Max. cycle size & LCM of all cycle sizes: A089410 (in range [A014137(n-1)..A014138(n)] of this permutation).

Extensions

Description clarified Oct 10 2006
Showing 1-10 of 49 results. Next