A057534 a(n+1) = a(n)/2 if 2|a(n), a(n)/3 if 3|a(n), a(n)/5 if 5|a(n), a(n)/7 if 7|a(n), a(n)/11 if 11|a(n), a(n)/13 if 13|a(n), otherwise 17*a(n)+1.
61, 1038, 519, 173, 2942, 1471, 25008, 12504, 6252, 3126, 1563, 521, 8858, 4429, 75294, 37647, 12549, 4183, 71112, 35556, 17778, 8889, 2963, 50372, 25186, 12593, 1799, 257, 4370, 2185, 437, 7430, 3715, 743, 12632, 6316, 3158, 1579, 26844, 13422
Offset: 0
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Collatz problem
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Maple
with(numtheory): a := proc(n) option remember: local k; if n=0 then RETURN(61); fi: for k from 1 to 6 do if a(n-1) mod ithprime(k) = 0 then RETURN(a(n-1)/ithprime(k)); fi: od: RETURN(17*a(n-1)+1) end:
-
Mathematica
a[n_] := a[n] = Which[n == 0, 61, n <= 84, Module[{k}, For[k = 1, k < PrimePi[17], k++, If[Mod[a[n - 1], Prime[k]] == 0, Return[a[n - 1]/Prime[k]]]]; Return[17*a[n - 1] + 1]], True, a[n - 84]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 22 2023, after Maple code *)
-
PARI
a(n)=if(n, n=a(n-1); if(n%2, if(n%3, if(n%5, if(n%7, if(n%11, if(n%13, 17*n+1, n/13), n/11), n/7), n/5), n/3), n/2), 61) \\ Charles R Greathouse IV, Oct 13 2022
Extensions
More terms from James Sellers and Larry Reeves (larryr(AT)acm.org), Oct 18 2000
Comments