A057539 Birthday set of order 7, i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6 and 7.
1, 29, 41, 71, 139, 169, 181, 209, 211, 239, 251, 281, 349, 379, 391, 419, 421, 449, 461, 491, 559, 589, 601, 629, 631, 659, 671, 701, 769, 799, 811, 839, 841, 869, 881, 911, 979, 1009, 1021, 1049, 1051, 1079, 1091, 1121, 1189, 1219, 1231, 1259, 1261, 1289
Offset: 1
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- A. Feist, On the Density of Birthday Sets, The Pentagon, 60 (No. 1, Fall 2000), 31-35.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{1,29,41,71,139,169,181,209,211},50] (* Harvey P. Dale, Sep 24 2014 *)
-
PARI
is_A057539(n,m=[2,3,4,5,6,7])=!for(i=1,#m,abs((n+1)%m[i]-1)==1||return)
-
PARI
is(n)=for(i=4,7,if(abs(centerlift(Mod(n,i)))!=1, return(0))); 1 \\ Charles R Greathouse IV, Oct 20 2014
-
Python
def ok(n): return all(n%d in [1, d-1] for d in range(2, 8)) def aupto(nn): return [m for m in range(1, nn+1) if ok(m)] print(aupto(1300)) # Michael S. Branicky, Jan 29 2021
Formula
G.f.: x*(1 + 28*x + 12*x^2 + 30*x^3 + 68*x^4 + 30*x^5 + 12*x^6 + 28*x^7 + x^8) / ((1+x)*(x^2+1)*(x^4+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = a(n-8) + 210 = a(n-1) + a(n-8) - a(n-9). - Charles R Greathouse IV, Oct 20 2014
a(n) = 105n/4 + O(1). - Charles R Greathouse IV, Oct 20 2014
Extensions
Offset corrected to 1 by Ray Chandler, Jul 29 2019
Comments