cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057539 Birthday set of order 7, i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6 and 7.

Original entry on oeis.org

1, 29, 41, 71, 139, 169, 181, 209, 211, 239, 251, 281, 349, 379, 391, 419, 421, 449, 461, 491, 559, 589, 601, 629, 631, 659, 671, 701, 769, 799, 811, 839, 841, 869, 881, 911, 979, 1009, 1021, 1049, 1051, 1079, 1091, 1121, 1189, 1219, 1231, 1259, 1261, 1289
Offset: 1

Views

Author

Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000

Keywords

Comments

Integers of the form sqrt(840*k+1) for k >= 0. - Boyd Blundell, Jul 10 2021

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{1,29,41,71,139,169,181,209,211},50] (* Harvey P. Dale, Sep 24 2014 *)
  • PARI
    is_A057539(n,m=[2,3,4,5,6,7])=!for(i=1,#m,abs((n+1)%m[i]-1)==1||return)
    
  • PARI
    is(n)=for(i=4,7,if(abs(centerlift(Mod(n,i)))!=1, return(0))); 1 \\ Charles R Greathouse IV, Oct 20 2014
    
  • Python
    def ok(n): return all(n%d in [1, d-1] for d in range(2, 8))
    def aupto(nn): return [m for m in range(1, nn+1) if ok(m)]
    print(aupto(1300)) # Michael S. Branicky, Jan 29 2021

Formula

G.f.: x*(1 + 28*x + 12*x^2 + 30*x^3 + 68*x^4 + 30*x^5 + 12*x^6 + 28*x^7 + x^8) / ((1+x)*(x^2+1)*(x^4+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = a(n-8) + 210 = a(n-1) + a(n-8) - a(n-9). - Charles R Greathouse IV, Oct 20 2014
a(n) = 105n/4 + O(1). - Charles R Greathouse IV, Oct 20 2014

Extensions

Offset corrected to 1 by Ray Chandler, Jul 29 2019