A057540 Birthday set of order 8: i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6, 7 and 8.
1, 41, 71, 169, 209, 239, 281, 391, 449, 559, 601, 631, 671, 769, 799, 839, 841, 881, 911, 1009, 1049, 1079, 1121, 1231, 1289, 1399, 1441, 1471, 1511, 1609, 1639, 1679, 1681, 1721, 1751, 1849, 1889, 1919, 1961, 2071, 2129, 2239, 2281, 2311, 2351, 2449
Offset: 1
Examples
2129 is on the list because it is congruent to 1 mod 2, -1 mod 3, 1 mod 4, -1 mod 5, -1 mod 6, 1 mod 7 and 1 mod 8.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Colin Barker)
- A. Feist, On the Density of Birthday Sets, The Pentagon, 60 (No. 1, Fall 2000), 31-35.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Programs
-
Mathematica
bso8Q[n_]:=Module[{s1=Mod[n,Range[2,8]],s2},s2=Abs[s1-Range[2,8]];AllTrue[ Thread[{s1,s2}],MemberQ[#,1]&]]; Select[Range[2500],bso8Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 18 2021 *)
-
PARI
Vec(x*(x^16 +40*x^15 +30*x^14 +98*x^13 +40*x^12 +30*x^11 +42*x^10 +110*x^9 +58*x^8 +110*x^7 +42*x^6 +30*x^5 +40*x^4 +98*x^3 +30*x^2 +40*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)) + O(x^100)) \\ Colin Barker, Mar 16 2015
Formula
G.f.: x*(x^16 +40*x^15 +30*x^14 +98*x^13 +40*x^12 +30*x^11 +42*x^10 +110*x^9 +58*x^8 +110*x^7 +42*x^6 +30*x^5 +40*x^4 +98*x^3 +30*x^2 +40*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)). - Colin Barker, Mar 16 2015
Extensions
Offset corrected to 1 by Ray Chandler, Jul 29 2019