cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057540 Birthday set of order 8: i.e., numbers congruent to +- 1 modulo 2, 3, 4, 5, 6, 7 and 8.

Original entry on oeis.org

1, 41, 71, 169, 209, 239, 281, 391, 449, 559, 601, 631, 671, 769, 799, 839, 841, 881, 911, 1009, 1049, 1079, 1121, 1231, 1289, 1399, 1441, 1471, 1511, 1609, 1639, 1679, 1681, 1721, 1751, 1849, 1889, 1919, 1961, 2071, 2129, 2239, 2281, 2311, 2351, 2449
Offset: 1

Views

Author

Andrew R. Feist (andrewf(AT)math.duke.edu), Sep 06 2000

Keywords

Examples

			2129 is on the list because it is congruent to 1 mod 2, -1 mod 3, 1 mod 4, -1 mod 5, -1 mod 6, 1 mod 7 and 1 mod 8.
		

Crossrefs

Cf. A007310, A057538, A057539 and A057541 are also birthday sets.

Programs

  • Mathematica
    bso8Q[n_]:=Module[{s1=Mod[n,Range[2,8]],s2},s2=Abs[s1-Range[2,8]];AllTrue[ Thread[{s1,s2}],MemberQ[#,1]&]]; Select[Range[2500],bso8Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 18 2021 *)
  • PARI
    Vec(x*(x^16 +40*x^15 +30*x^14 +98*x^13 +40*x^12 +30*x^11 +42*x^10 +110*x^9 +58*x^8 +110*x^7 +42*x^6 +30*x^5 +40*x^4 +98*x^3 +30*x^2 +40*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)) + O(x^100)) \\ Colin Barker, Mar 16 2015

Formula

G.f.: x*(x^16 +40*x^15 +30*x^14 +98*x^13 +40*x^12 +30*x^11 +42*x^10 +110*x^9 +58*x^8 +110*x^7 +42*x^6 +30*x^5 +40*x^4 +98*x^3 +30*x^2 +40*x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 +1)*(x^8 +1)). - Colin Barker, Mar 16 2015

Extensions

Offset corrected to 1 by Ray Chandler, Jul 29 2019