A057562 Number of partitions of n into parts all relatively prime to n.
1, 1, 2, 2, 6, 2, 14, 6, 16, 7, 55, 6, 100, 17, 44, 32, 296, 14, 489, 35, 178, 77, 1254, 30, 1156, 147, 731, 142, 4564, 25, 6841, 390, 1668, 474, 4780, 114, 21636, 810, 4362, 432, 44582, 103, 63260, 1357, 4186, 2200, 124753, 364, 105604, 1232, 24482, 3583
Offset: 1
Keywords
Examples
The unrestricted partitions of 4 are 1+1+1+1, 1+1+2, 1+3, 2+2 and 4. Of these, only 1+1+1+1 and 1+3 contain parts which are all relatively prime to 4. So a(4) = 2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a057562 n = p (a038566_row n) n where p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Jul 05 2013
-
Mathematica
Table[Count[IntegerPartitions@ n, k_ /; AllTrue[k, CoprimeQ[#, n] &]], {n, 52}] (* Michael De Vlieger, Aug 01 2017 *)
-
PARI
R(n, v)=if(#v<2 || n
=0, sum(i=1, #v, R(n-v[i], v[1..i]))) a(n)=if(isprime(n), return(numbpart(n)-1)); R(n, select(k->gcd(k, n)==1, vector(n, i, i))) \\ Charles R Greathouse IV, Sep 13 2012 -
PARI
a(n)=polcoeff(1/prod(k=1,n,if(gcd(k,n)==1,1-x^k,1), O(x^(n+1))+1), n) \\ Charles R Greathouse IV, Sep 13 2012
Formula
Coefficient of x^n in expansion of 1/Product_{d : gcd(d, n)=1} (1-x^d). - Vladeta Jovovic, Dec 23 2004
Extensions
More terms from Naohiro Nomoto, Feb 28 2002
Corrected by Vladeta Jovovic, Dec 23 2004
Comments