cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057643 Least common multiple of all (k+1)'s, where the k's are the positive divisors of n.

Original entry on oeis.org

2, 6, 4, 30, 6, 84, 8, 90, 20, 66, 12, 5460, 14, 120, 48, 1530, 18, 7980, 20, 2310, 88, 276, 24, 81900, 78, 378, 140, 3480, 30, 114576, 32, 16830, 204, 630, 72, 3838380, 38, 780, 280, 284130, 42, 397320, 44, 4140, 5520, 1128, 48, 9746100, 200, 14586, 468
Offset: 1

Views

Author

Leroy Quet, Oct 11 2000

Keywords

Comments

a(n) is a divisor of A020696(n). - Ivan Neretin, May 27 2015

Examples

			Since the positive divisors of 6 are 1, 2, 3 and 6, a(6) = LCM(1+1,2+1,3+1,6+1) = LCM(2,3,4,7) = 84.
		

Crossrefs

Cf. A119250.
Cf. A020696 (product instead of LCM).

Programs

  • Maple
    f:= n -> ilcm(op(map(`+`,numtheory:-divisors(n),1)));
    seq(f(n),n=1..100); # Robert Israel, Jul 24 2014
  • Mathematica
    a057643[n_Integer] := Apply[LCM, Map[# + 1 &, Divisors[n]]]; Table[a057643[n], {n, 10000}] (* Michael De Vlieger, Jul 19 2014 *)
  • PARI
    a(n)=lcm(apply(d->d+1,divisors(n))) \\ Charles R Greathouse IV, Feb 14 2013
    
  • Python
    from math import lcm
    from sympy import divisors
    def A057643(n): return lcm(*(d+1 for d in divisors(n,generator=True))) # Chai Wah Wu, Jun 30 2022