A057643 Least common multiple of all (k+1)'s, where the k's are the positive divisors of n.
2, 6, 4, 30, 6, 84, 8, 90, 20, 66, 12, 5460, 14, 120, 48, 1530, 18, 7980, 20, 2310, 88, 276, 24, 81900, 78, 378, 140, 3480, 30, 114576, 32, 16830, 204, 630, 72, 3838380, 38, 780, 280, 284130, 42, 397320, 44, 4140, 5520, 1128, 48, 9746100, 200, 14586, 468
Offset: 1
Keywords
Examples
Since the positive divisors of 6 are 1, 2, 3 and 6, a(6) = LCM(1+1,2+1,3+1,6+1) = LCM(2,3,4,7) = 84.
Links
- Carl R. White, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= n -> ilcm(op(map(`+`,numtheory:-divisors(n),1))); seq(f(n),n=1..100); # Robert Israel, Jul 24 2014
-
Mathematica
a057643[n_Integer] := Apply[LCM, Map[# + 1 &, Divisors[n]]]; Table[a057643[n], {n, 10000}] (* Michael De Vlieger, Jul 19 2014 *)
-
PARI
a(n)=lcm(apply(d->d+1,divisors(n))) \\ Charles R Greathouse IV, Feb 14 2013
-
Python
from math import lcm from sympy import divisors def A057643(n): return lcm(*(d+1 for d in divisors(n,generator=True))) # Chai Wah Wu, Jun 30 2022
Comments