cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A377950 Numbers k that divide A057643(k) = lcm{d+1 : d|k}.

Original entry on oeis.org

1, 2, 6, 12, 42, 60, 84, 120, 140, 156, 168, 210, 220, 240, 280, 312, 360, 420, 440, 462, 468, 504, 600, 630, 660, 720, 770, 780, 840, 924, 936, 1008, 1064, 1092, 1170, 1200, 1260, 1320, 1404, 1428, 1540, 1560, 1680, 1683, 1800, 1806, 1848, 1860, 1980, 2016, 2160
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2024

Keywords

Comments

After the first term a(1) = 1, the next odd term is a(44) = 1683, the next term that is coprime to 6 is a(159) = 10465, and the next term that is coprime to 30 is a(1359) = 151487.

Crossrefs

Cf. A057643.
A377951 is a subsequence.
Similar sequences: A056954, A355331, A377952.

Programs

  • Mathematica
    Select[Range[2500], Divisible[LCM @@ (Divisors[#] + 1), #] &]
  • PARI
    is(k) = !(lcm(apply(x->x+1, divisors(k))) % k);

A377951 Numbers k such that k | A057643(k) and (k+1) | A057643(k+1).

Original entry on oeis.org

1, 799799, 1204280, 2460975, 3382379, 6116175, 7050120, 8070699, 13339424, 20966049, 28460600, 41265680, 41463135, 52404624, 66108399, 68919080, 72946224, 81102944, 84479680, 102971924, 106663304, 110791736, 112375899, 115225439, 118333215, 131115984, 132073424
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2024

Keywords

Comments

Numbers k such that k and k+1 are both terms in A377950.

Crossrefs

Cf. A057643.
Subsequence of A377950.
Similar sequences: A355332, A377949, A377953.

Programs

  • Mathematica
    q[n_] := q[n] = Divisible[LCM @@ (Divisors[n] + 1), n]; Select[Range[4*10^6], q[#] && q[# + 1] &]
  • PARI
    is1(k) = !(lcm(apply(x->x+1, divisors(k))) % k);
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}

A378056 a(n) = gcd(A057643(n), A084190(n)) = gcd(lcm{d+1 : d|n}, lcm{d-1 : d > 1 and d|n}).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 2, 3, 4, 6, 2, 30, 2, 6, 4, 15, 2, 20, 2, 6, 4, 6, 2, 210, 6, 6, 4, 6, 2, 84, 2, 15, 4, 6, 12, 420, 2, 6, 4, 126, 2, 60, 2, 30, 8, 6, 2, 210, 8, 6, 4, 30, 2, 20, 12, 90, 4, 6, 2, 4620, 2, 6, 40, 45, 6, 84, 2, 6, 4, 36, 2, 420, 2, 6, 24, 30, 12
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{d = Divisors[n]}, GCD[LCM @@ (d + 1), LCM @@ (Rest @ d - 1)]]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(d = divisors(n)); gcd(lcm(apply(x->x+1, d)), lcm(apply(x -> if(x > 1, x-1, x), d)));}

Formula

a(n) == 1 (mod 2) if and only if n is a power of 2 (A000079).
a(p) = 2 for an odd prime p. Composite numbers k such that a(k) = 2 are listed in A378057.

A083344 a(n) = A082457(n) - A066715(n) = gcd(2n+1, A057643(2n+1)) - gcd(2n+1, A000203(2n+1)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 30, 0, 0, 0, 0, 0, 0, 4, 0, 0
Offset: 1

Views

Author

Labos Elemer, Apr 25 2003

Keywords

Examples

			n=22: 2n+1 = 45, A057643(45) = 5520, a(22) = gcd(45,5520) = 15 while A066715(45) = 3; a(22) = 15-3 = 12; sites where nonzero terms appear see in A082452.
		

Crossrefs

Programs

  • Mathematica
    di[x_] := Apply[LCM, Divisors[x]+1] (*A066715=*)t1=Table[GCD[2*n+1, DivisorSigma[1, 2*n+1]], {n, 1, 2048}]; (*A082457=*)t2=Table[GCD[2*w+1, di[1+2*w]], {w, 1, 2048}]; (*A083344=*)t2-t1;
  • PARI
    a(n)=gcd(lcm(apply(d->d+1,divisors(2*n+1))),2*n+1)-gcd(sigma(2*n+1),2*n+1) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = gcd(2n+1, lcm(1+D(2n+1))) - gcd(2n+1, sigma(2n+1)), gcd(2n+1, A057643(2n+1)) - gcd(2n+1, A000203(2n+1)), where D(x) is the set of divisors of x.

A082457 a(n) = gcd(1+2n, A057643(1+2n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 1, 5, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 3, 1, 5, 1, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 15, 1, 1, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Labos Elemer, Apr 25 2003

Keywords

Comments

This and A066715 are mostly equal; for differences see A083344.

Examples

			n=22: 2n+1=45, A057643(45)=5520, a(22)=gcd(45,5520)=15 while A066715(45)=3.
		

Crossrefs

Programs

  • Mathematica
    di[x_] := Apply[LCM, Divisors[x]+1] Table[GCD[2*w+1, di[1+2*w]], {w, 1, 2048}];

A020696 Let a,b,c,...k be all divisors of n; a(n) = (a+1)*(b+1)*...*(k+1).

Original entry on oeis.org

2, 6, 8, 30, 12, 168, 16, 270, 80, 396, 24, 10920, 28, 720, 768, 4590, 36, 31920, 40, 41580, 1408, 1656, 48, 2457000, 312, 2268, 2240, 104400, 60, 5499648, 64, 151470, 3264, 3780, 3456, 76767600, 76, 4680, 4480, 15343020, 84, 19071360, 88, 372600, 353280, 6768
Offset: 1

Views

Author

Amarnath Murthy, Jun 01 2003

Keywords

Comments

Named "Vandiver's arithmetical function" by Sándor (2021), after the American mathematician Harry Schultz Vandiver (1882-1973). - Amiram Eldar, Jun 29 2022

Crossrefs

Cf. A057643 (LCM instead of product).
Cf. A299436 (exp).

Programs

  • Haskell
    a020696 = product . map (+ 1) . a027750_row'
    -- Reinhard Zumkeller, Mar 28 2015
    
  • Maple
    a:= n-> mul(d+1, d=numtheory[divisors](n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 30 2022~
  • Mathematica
    Table[Times @@ (Divisors[n] + 1), {n, 43}] (* Ivan Neretin, May 27 2015 *)
  • PARI
    a(n) = {d = divisors(n); return (prod(i=1, #d, d[i]+1));} \\ Michel Marcus, Jun 12 2013
    
  • Python
    from math import prod
    from sympy import divisors
    def A020696(n): return prod(d+1 for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 30 2022

Formula

a(p) = 2(p+1), a(p^2) = 2(p+1)(p^2+1) for primes p.
a(n) = Product_{k = 1..A000005(n)} (A027750(n,k) + 1). - Reinhard Zumkeller, Mar 28 2015
a(n) = Product_{d|n} (d+1). - Amiram Eldar, Jun 29 2022

Extensions

Edited by Don Reble, Jun 05 2003

A164020 Denominators of Bernoulli numbers interleaved with even numbers.

Original entry on oeis.org

1, 2, 6, 4, 30, 6, 42, 8, 30, 10, 66, 12, 2730, 14, 6, 16, 510, 18, 798, 20, 330, 22, 138, 24, 2730, 26, 6, 28, 870, 30, 14322, 32, 510, 34, 6, 36, 1919190, 38, 6, 40, 13530, 42, 1806, 44, 690, 46, 282, 48, 46410, 50, 66, 52, 1590, 54, 798, 56, 870, 58, 354, 60, 56786730
Offset: 0

Views

Author

Paul Curtz, Aug 08 2009

Keywords

Crossrefs

Programs

  • Magma
    [IsEven(n) select Denominator(Bernoulli(n)) else n+1: n in [0..100]]; // Vincenzo Librandi, Sep 08 2017
  • Mathematica
    a[n_]:=If[OddQ[n], n+1, BernoulliB[n] // Denominator]; Table[a[n], {n, 0, 60}](* Jean-François Alcover, Dec 29 2012 *)
    With[{nn=60},Riffle[Denominator[BernoulliB[Range[0,nn,2]]],Range[2,nn,2]]] (* Harvey P. Dale, Jul 18 2015 *)

Formula

a(2*n) = A002445(n).
a(2*n+1) = 2*(n+1).
a(n) divides A057643(n). Franklin T. Adams-Watters, Aug 03 2012

Extensions

Extended by R. J. Mathar, Sep 23 2009

A082452 a(n)=2n+1 where n is such that A083344(n) is not zero.

Original entry on oeis.org

45, 75, 117, 147, 189, 195, 225, 231, 245, 315, 325, 345, 363, 385, 405, 441, 483, 495, 507, 525, 561, 567, 585, 595, 645, 663, 675, 693, 715, 735, 765, 775, 777, 795, 819, 845, 847, 867, 875, 891, 931, 945, 957, 975, 1001, 1035, 1071, 1083, 1089, 1095, 1125
Offset: 1

Views

Author

Labos Elemer, Apr 25 2003

Keywords

Examples

			n=22: 2n+1=45, A057643(45)=5520, a(22)=GCD[45,5520]=15 while A066715[45]=3; a(22)=15-3=12.
		

Crossrefs

Programs

  • Mathematica
    di[x_] := Apply[LCM, Divisors[x]+1] (*A066715=*)t1=Table[GCD[2*n+1, DivisorSigma[1, 2*n+1]], {n, 1, 2048}]; (*A082457=*)t2=Table[GCD[2*w+1, di[1+2*w]], {w, 1, 2048}]; (*A083344=*)t3=t2-t1; (*A082452=*)1+2*Flatten[Position[Abs[Sign[t3]], 1]];

A082453 a(n)=2n+1 where n is such that A083344(n) is zero.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137
Offset: 1

Views

Author

Labos Elemer, Apr 25 2003

Keywords

Examples

			First two missing odd numbers are 45 and 75; missing terms are in A082452.
		

Crossrefs

Programs

  • Mathematica
    di[x_] := Apply[LCM, Divisors[x]+1] (*A066715=*)t1=Table[GCD[2*n+1, DivisorSigma[1, 2*n+1]], {n, 1, 2048}]; (*A082457=*)t2=Table[GCD[2*w+1, di[1+2*w]], {w, 1, 2048}]; (*A083344=*)t3=t2-t1; (*A082453=*)1+2*Flatten[Position[Abs[Sign[t3]], 0]];

A119250 Smallest number greater than n having a maximal number of divisors d such that d-1 are divisors of n.

Original entry on oeis.org

2, 6, 4, 6, 6, 12, 8, 30, 20, 66, 12, 60, 14, 24, 48, 30, 18, 84, 20, 30, 88, 276, 24, 60, 78, 42, 140, 30, 30, 84, 32, 90, 204, 630, 72, 60, 38, 60, 280, 90, 42, 84, 44, 60, 60, 1128, 48, 60, 200, 66, 468, 210, 54, 84, 168, 120, 580, 1770, 60, 420, 62, 96, 440, 90, 462, 84
Offset: 1

Views

Author

Reinhard Zumkeller, May 10 2006

Keywords

Comments

Let x(0)=1 and x(k) = lcm(x(k-1), d(k)) with 1 <= k <= A000005(n), where d(k) = (k-th divisor of n): A057643(n)=x(A000005(n)) and a(n) = Min{x(i): x(i)>n}.
a(n) = n+1 iff n is an odd prime;
A057643(n) = x(A000005(n)) and a(n) = Min{x(i): x(i)>n}.

Crossrefs

Cf. A027750.
Showing 1-10 of 10 results.