cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A165299 a(n) = A002790(n) / A164020(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 60, 60, 1, 3, 10, 10, 42, 42, 20, 12, 30, 30, 252, 36, 4, 4, 8, 8, 231, 231, 70, 210, 2, 2, 5460, 5460, 14, 42, 660, 132, 1260, 1260, 56, 840, 210, 210, 7956, 7956, 44, 396, 440, 440, 228, 228, 40, 120, 24, 24, 720720, 144144, 715, 2145, 102, 510
Offset: 0

Views

Author

Paul Curtz, Sep 14 2009

Keywords

Programs

  • Maple
    A002790 := proc(n) add((-1)^k*stirling1(n, k)/(k+1), k=0..n) ; denom(%) ; end proc:
    A002445 := proc(n) bernoulli(2*n) ; denom(%) ; end proc:
    A164020 := proc(n) if type(n,'even') then A002445(n/2) ; else n+1 ; end if; end proc:
    A165299 := proc(n) A002790(n)/A164020(n) ; end proc:
    seq(A165299(n),n=0..80) ; # R. J. Mathar, Jul 04 2011

A176327 Numerators of the rational sequence with e.g.f. (x/2)*(1+exp(-x))/(1-exp(-x)).

Original entry on oeis.org

1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0

Views

Author

Paul Curtz, Apr 15 2010

Keywords

Comments

Numerator of the Bernoulli number B_n, except B(1)=0.
A027641 is the main entry for this sequence, which is only a minor variation. - N. J. A. Sloane, Nov 29 2010.
This could formally be defined by building the arithmetic mean of the numerators in A164555(n) and A027641(n).

Crossrefs

Cf. A176289 (denominators), A027642, A141056, A164020, A165823

Programs

  • Maple
    seq(numer((bernoulli(i,0)+bernoulli(i,1))/2),i=0..40); # Peter Luschny, Jun 17 2012
  • Mathematica
    terms = 41; egf = (x/2)*((1 + Exp[-x])/(1 - Exp[-x])) + O[x]^(terms+1);
    CoefficientList[egf, x]*Range[0, terms-1]! // Numerator (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    apply(numerator, Vec(serlaplace((x/2)*(1+exp(-x))/(1-exp(-x))))) \\ Charles R Greathouse IV, Sep 26 2017

Formula

a(2n+1) = 0. a(2n ) = A000367(n).
a(n) = A164555(n) = A027641(n) if n <>1.

Extensions

New name from Peter Luschny, Jun 18 2012

A181722 Numerator of (1/n - Bernoulli number A164555(n)/A027642(n)).

Original entry on oeis.org

0, 0, 1, 1, 7, 1, 5, 1, 13, 1, 1, 1, 901, 1, -11, 1, 3647, 1, -43825, 1, 1222387, 1, -854507, 1, 1181821001, 1, -76977925, 1, 23749461059, 1, -8615841275543, 1, 28267510484519, 1
Offset: 1

Views

Author

Paul Curtz, Nov 17 2010

Keywords

Comments

An autosequence is a sequence whose inverse binomial transform is the sequence signed. In integers, the oldest example is Fibonacci A000045. In fractions, A164555/A027642 is the son of 1/n via the Akiyama-Tanigawa algorithm; grandson is (A174110/A174111) = 1/2, 2/3, 1/2, 2/15, ...; see A164020. See A174341/A174342. All are from the same family.

Examples

			Fractions are 0, 0, 1/6, 1/4, 7/30, 1/6, 5/42, 1/8, 13/90, 1/10, 1/66, 1/12, 901/2730, ...
		

Crossrefs

Programs

  • Magma
    A181722:= func< n | n le 2 select 0 else Numerator(1/n - Bernoulli(n-1)) >;
    [A181722(n): n in [1..40]]; // G. C. Greubel, Mar 25 2024
    
  • Mathematica
    a[n_] := If[n <= 2, 0, Numerator[1/n - BernoulliB[n-1]]];
    Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Jun 07 2017 *)
  • SageMath
    def A181722(n): return 0 if n<3 else numerator(1/n - bernoulli(n-1))
    [A181722(n) for n in range(1,41)] # G. C. Greubel, Mar 25 2024

A176144 a(2n) = A164555(n). a(2n+1) = A027641(n).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 5, 5, 0, 0, -691, -691, 0, 0, 7, 7, 0, 0, -3617, -3617, 0, 0, 43867, 43867, 0, 0, -174611, -174611, 0, 0, 854513, 854513, 0, 0, -236364091, -236364091, 0, 0, 8553103, 8553103, 0, 0, -23749461029, -23749461029, 0, 0, 8615841276005
Offset: 0

Views

Author

Paul Curtz, Apr 10 2010

Keywords

Comments

Formally, these are the numerators of a sequence of fractions defined by alternating A164555(n)/A027642(n) with A027641(n)/A027642(n),
which apart from the third term duplicates the Bernoulli numbers.
Essentially a duplication of the entries of A027641.

Crossrefs

Extensions

Edited by R. J. Mathar, Jun 07 2010

A165823 Large denominators of Bernoulli numbers. Mix A002445, 2*A141421 .

Original entry on oeis.org

1, 2, 6, 24, 30, 1440, 42, 120960, 30, 7257600, 66, 958003200, 2730, 5230697472000, 6, 62768369664000, 510, 64023737057280000
Offset: 0

Views

Author

Paul Curtz, Sep 28 2009

Keywords

Comments

b(n)=a(2n+1)/a(2n) =2,4,48,2880,241920,145152,= 2*(1,2,24,1440,=1,2*A141421). Among other denominators, A027642,A141056,A164020. 2*A141421 is second bisection of A091137 which is linked to Bernoulli via A027760. See A160014,von Staudt-Clausen theorem.

A249306 Denominators A027642(n) of Bernoulli numbers except for a(4*k+5)=2 instead of 1.

Original entry on oeis.org

1, 2, 6, 1, 30, 2, 42, 1, 30, 2, 66, 1, 2730, 2, 6, 1, 510, 2, 798, 1, 330, 2, 138, 1, 2730, 2, 6, 1, 870, 2, 14322, 1, 510, 2, 6, 1, 1919190, 2, 6, 1, 13530, 2, 1806, 1, 690, 2, 282, 1, 46410, 2, 66, 1, 1590, 2, 798, 1, 870, 2, 354, 1
Offset: 0

Views

Author

Paul Curtz, Oct 28 2014

Keywords

Comments

There exist an infinity of 1's, 2's, 6's, 30's, 42's, 66's, ... .
Respective ranks:
0, 3, 7, 11, 15, 19, ...
1, 5, 9, 13, 17, 21, ... (= A016813)
2, 14, 26, 34, 38, 62, ... (= A051222)
4, 8, 68, 76, 124, 152, ... (= A051226)
6, 114, 186, 258, 354, 402, ... (= A051228)
10, 50, 170, 370, 470, 590, ... (= A051230)
12, 24, 1308, 1884, 2004, 2364, ... (= A249134)
etc.
Hence by antidiagonals a permutation of A001477(n).
First column: A248614(n).
a(n) is an alternative sequence for the denominators of the Bernoulli numbers.
First 36 terms of the corresponding clockwise spiral:
.
330------2----138------1---2730------2
| |
| |
1 42------1-----30------2 6
| | | |
| | | |
798 2 1------2 66 1
| | | | |
| | | | |
2 30------1------6 1 870
| | |
| | |
510------1------6------2---2730 2
|
|
1------6------2----510------1--14322

Crossrefs

A variant of the Clausen numbers A141056, A160014. And of A176591.

Programs

  • Maple
    Clausen := proc(n) local S, i;
    S := numtheory[divisors](n); S := map(i->i+1, S);
    S := select(isprime, S); mul(i, i=S) end:
    A249306 := n -> `if`(n mod 4 = 3, 1, Clausen(n)):
    seq(A249306(n), n=0..59); # Peter Luschny, Nov 10 2014
  • Mathematica
    a[n_] := Denominator[BernoulliB[n]]; a[n_ /; Mod[n, 4] == 1] = 2; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 28 2014 *)

Formula

a(2n) = A002445(n), a(2n+1) = A000034(n+1).
Showing 1-6 of 6 results.