A226158 a(n) = 2*n*(2^n - 1)*zeta(1-n) where in the case n=0 the limit is understood, zeta(s) the Riemann zeta function.
0, -1, -1, 0, 1, 0, -3, 0, 17, 0, -155, 0, 2073, 0, -38227, 0, 929569, 0, -28820619, 0, 1109652905, 0, -51943281731, 0, 2905151042481, 0, -191329672483963, 0, 14655626154768697, 0, -1291885088448017715, 0, 129848163681107301953
Offset: 0
Keywords
Examples
G.f. = - x - x^2 + x^4 - 3*x^6 + 17*x^8 - 155*x^10 + 2073*x^12 - 38227*x^14 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..550
- Peter Luschny, The Bernoulli Manifesto.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 50); [0] cat Coefficients(R!(Laplace( -2*x/(1+Exp(-x)) ))); // G. C. Greubel, Apr 22 2023 -
Maple
seq(n!*coeff(series(-2*x/(1+exp(-x)), x, 34), x, n), n=0..32); # Second program: A226158 := proc(n) local f; f := z -> Zeta(1-z)*2*z*(2^z-1); if n=0 then limit(f(z), z=0) else f(n) fi end: seq(A226158(n), n=0..32);
-
Mathematica
a[0]=0; a[1]= -1; a[n_]:= n*EulerE[n-1, 0]; Table[a[n], {n,0,32}] (* Jean-François Alcover, Sep 12 2013 *) (* Programs from Michael Somos, Apr 23 2014 *) a[n_]:= If[n<1, 0, -n*EulerE[n-1, 1]]; a[n_]:= If[n<0, 0, 2*(1-2^n)*BernoulliB[n,1]]; (* End *) Table[2*n*PolyLog[1-n, -1], {n,0,32}] (* Peter Luschny, Aug 17 2021 *)
-
PARI
my(x='x+O('x^40)); concat([0], Vec(serlaplace(-2*x/(1+exp(-x))))) \\ G. C. Greubel, Jan 19 2018
-
Sage
def A226158(n): return -2*n*zeta(1-n)*(1-2^n) if n != 0 else 0 [A226158(n) for n in (0..32)] # Alternatively: def A226158_list(len): e, f, R, C = 4, 1, [0], [1]+[0]*(len-1) for n in (2..len-1): for k in range(n, 0, -1): C[k] = -C[k-1] / (k+1) C[0] = -sum(C[k] for k in (1..n)) R.append((2-e)*f*C[0]) f *= n; e *= 2 return R print(A226158_list(34)) # Peter Luschny, Feb 22 2016
Formula
E.g.f.: -2*x/(1+exp(-x)).
E.g.f.: -2*x/(1+exp(-x))= -2 - 2*T(0), where T(k) = 4*k-1 + x/( 2 - x/( 4*k+1 + x/( 2 - x/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2013
G.f.: conjecture: -x/Q(0),where Q(k) = 1 - x*(k+1)/(1 + x*(k+1)/(1 - x*(k+1)/(1 + x*(k+1)/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2013
a(n) = 2*(1 - 2^n)*Bernoulli(n, 1). - Peter Luschny, Apr 16 2014
a(n) = -n*Euler(n - 1, 1). - Michael Somos, Apr 23 2014
a(n) = 2^n*(Bernoulli(n, 1/2) - Bernoulli(n, 1)). - Peter Luschny, Jul 10 2020
a(n) = 2*n*PolyLog[1 - n, -1] - Peter Luschny, Aug 17 2021
Comments