cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073571 Irreducible trinomials: numbers n such that x^n + x^k + 1 is an irreducible polynomial (mod 2) for some k with 0 < k < n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 44, 46, 47, 49, 52, 54, 55, 57, 58, 60, 62, 63, 65, 66, 68, 71, 73, 74, 76, 79, 81, 84, 86, 87, 89, 90, 92, 93, 94, 95, 97, 98, 100, 102, 103, 105, 106, 108, 110, 111, 113
Offset: 1

Views

Author

Paul Zimmermann, Sep 05 2002

Keywords

Comments

This sequence is infinite: Golomb, "Shift Register Sequences," on p. 96 (1st ed., 1966) states that "It is easy to exhibit an infinite class of irreducible trinomials. viz. x^(2*3^a) + x^(3^a) + 1 for all a = 0, 1, 2, ..., but whose roots have only 3^(a+1) as their period." - A. M. Odlyzko, Dec 05 1997.

References

  • S. W. Golomb, "Shift register sequence", revised edition, reprinted by Aegean Park Press, 1982. See Tables V-1, V-2.

Crossrefs

For the numbers of such trinomials for a given n, see A057646.
See A073726 for primitive trinomials and A001153 for primitive Mersenne trinomials (and references). Complement of A057486. For values of k see A057774.

Programs

  • Maple
    a := proc(n) local k; for k from 1 to n-1 do if Irreduc(x^n+x^k+1) mod 2 then RETURN(n) fi od; NULL end: [seq(a(n), n=1..130)];
  • Mathematica
    irreducibleQ[n_] := (irr = False; k = 1; While[k < n, If[ Factor[ x^n + x^k + 1, Modulus -> 2] == x^n + x^k + 1, irr = True; Break[]]; k++]; irr); Select[ Range[120], irreducibleQ] (* Jean-François Alcover, Jan 07 2013 *)
  • PARI
    is(n)=for(s=1,n-1,if(polisirreducible((x^n+x^s+1)*Mod(1,2)), return(1)));0 \\ Charles R Greathouse IV, May 30 2013

A278572 Irregular triangle read by rows: row n lists values of k in range 1 <= k <= n/2 such x^n + x^k + 1 is irreducible (mod 2), or -1 if no such k exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, -1, 1, 4, 3, 2, 3, 5, -1, 5, 1, 4, 7, -1, 3, 5, 6, 3, 7, 9, -1, 3, 5, 2, 7, 1, 5, 9, -1, 3, 7, -1, -1, 1, 3, 9, 13, 2, 1, 9, 3, 6, 7, 13, -1, 10, 13, 7, 2, 9, 11, 15, -1, -1, 4, 8, 14, -1, 3, 20, 7, -1, 5, -1, 1, 5, 14, 20, 21, -1
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2016

Keywords

Comments

This is the format used by John Brillhart (1968) and Zierler and Brillhart (1968).

Examples

			Triangle begins:
1,
1,
1,
2,
1, 3,
1, 3,
-1,
1, 4,
3,
2,
3, 5,
-1,
5,
1, 4, 7,
-1,
3, 5, 6,
...
		

References

  • Alanen, J. D., and Donald E. Knuth. "Tables of finite fields." Sankhyā: The Indian Journal of Statistics, Series A (1964): 305-328.
  • John Brillhart, On primitive trinomials (mod 2), unpublished Bell Labs Memorandum, 1968.
  • Marsh, Richard W. Table of irreducible polynomials over GF (2) through degree 19. Office of Technical Services, US Department of Commerce, 1957.

Crossrefs

Rows n that contain particular numbers: 1 (A002475), 2 (A057460), 3 (A057461), 4 (A057463), 5 (A057474), 6 (A057476), 7 (A057477), 8 (A057478), 9 (A057479), 10 (A057480), 11 (A057481), 12 (A057482), 13 (A057483).

Programs

  • Maple
    T:= proc(n) local L; L:= select(k -> Irreduc(x^n+x^k+1) mod 2, [$1..n/2]); if L = [] then -1 else op(L) fi
    end proc:
    map(T, [$2..100]); # Robert Israel, Mar 28 2017
  • Mathematica
    DeleteCases[#, 0] & /@ Table[Boole[IrreduciblePolynomialQ[x^n + x^# + 1, Modulus -> 2]] # & /@ Range[Floor[n/2]], {n, 2, 40}] /. {} -> {-1} // Flatten (* Michael De Vlieger, Mar 28 2017 *)

A278573 Irregular triangle read by rows: row n lists values of k in range 1 <= k <= n-1 such x^n + x^k + 1 is irreducible (mod 2), or -1 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 3, 5, 1, 3, 4, 6, -1, 1, 4, 5, 8, 3, 7, 2, 9, 3, 5, 7, 9, -1, 5, 9, 1, 4, 7, 8, 11, 14, -1, 3, 5, 6, 11, 12, 14, 3, 7, 9, 11, 15, -1, 3, 5, 15, 17, 2, 7, 14, 19, 1, 21, 5, 9, 14, 18, -1, 3, 7, 18, 22, -1, -1, 1, 3, 9, 13, 15, 19, 25, 27, 2, 27, 1, 9, 21, 29, 3, 6, 7, 13
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2016

Keywords

Comments

Row n (if it is not -1) is invariant under the map k -> n-k. - Robert Israel, Mar 14 2018

Examples

			Triangle begins:
1,
1, 2,
1, 3,
2, 3,
1, 3, 5,
1, 3, 4, 6,
-1,
1, 4, 5, 8,
3, 7,
2, 9,
3, 5, 7, 9,
-1,
5, 9,
1, 4, 7, 8, 11, 14,
-1,
3, 5, 6, 11, 12, 14,
3, 7, 9, 11, 15,
-1,
3, 5, 15, 17,
2, 7, 14, 19,
1, 21,
...
		

References

  • Alanen, J. D., and Donald E. Knuth. "Tables of finite fields." Sankhyā: The Indian Journal of Statistics, Series A (1964): 305-328.
  • John Brillhart, On primitive trinomials (mod 2), unpublished Bell Labs Memorandum, 1968.
  • Marsh, Richard W. Table of irreducible polynomials over GF (2) through degree 19. Office of Technical Services, US Department of Commerce, 1957.

Crossrefs

Programs

  • Maple
    for n from 2 to 30 do
      S:= select(k -> Irreduc(x^n+x^k+1) mod 2, [$1..n-1]);
      if S = [] then print(-1) else print(op(S)) fi
    od: # Robert Israel, Mar 14 2018

A344146 a(n) is the number of pentanomials x^n + x^a + x^b + x^c + 1 that are irreducible over GF(2) for n > a > b > c > 0.

Original entry on oeis.org

1, 4, 6, 10, 17, 22, 38, 46, 54, 66, 73, 98, 94, 152, 124, 158, 199, 184, 226, 296, 202, 406, 328, 334, 418, 380, 486, 584, 351, 666, 578, 658, 896, 604, 728, 964, 577, 1128, 925, 846, 1286, 898, 1102, 1520, 760, 1628, 1421, 1312, 1837, 1298, 1580, 2220, 1142, 2346, 1764, 1524, 2782
Offset: 4

Views

Author

Jianing Song, May 10 2021

Keywords

Comments

It is conjectured that a(n) > 0 for all n >= 4.

Examples

			a(4) = 1 because there is only one irreducible pentanomial of degree 4 over GF(2), namely x^4 + x^3 + x^2 + x + 1.
a(6) = 4 because there are 4 irreducible pentanomials of degree 6 over GF(2): x^6 + x^4 + x^2 + x + 1, x^6 + x^4 + x^3 + x + 1, x^6 + x^5 + x^2 + x + 1, x^6 + x^5 + x^3 + x^2 + 1, x^6 + x^5 + x^4 + x + 1 and x^6 + x^5 + x^4 + x^2 + 1.
a(7) = 10 since the 10 irreducible pentanomials of degree 6 over GF(2) are of the form x^7 + x^a + x^b + x^c + 1 for (a,b,c) = (3,2,1), (4,3,2), (5,2,1), (5,3,1), (5,4,3), (6,3,1), (6,4,1), (6,4,2), (6,5,2), (6,5,4).
		

Crossrefs

Cf. A014580 (irreducible polynomials over GF(2) encoded as binary numbers), A057646.

Programs

  • PARI
    a(n) = sum(a=3, n-1, sum(b=2, a-1, sum(c=1, b-1, polisirreducible(Mod(x^n+x^a+x^b+x^c+1, 2)))))
Showing 1-4 of 4 results.