A057705 Primorial primes: primes p such that p+1 is a primorial number (A002110).
5, 29, 2309, 30029, 304250263527209, 23768741896345550770650537601358309, 19361386640700823163471425054312320082662897612571563761906962414215012369856637179096947335243680669607531475629148240284399976569
Offset: 1
Links
- Chris K. Caldwell's The Top Twenty, Primorial.
- Romeo Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - _N. J. A. Sloane_, Jun 13 2012
Crossrefs
Programs
-
Haskell
a057705 n = a057705_list !! (n-1) a057705_list = filter ((== 1) . a010051) a057588_list -- Reinhard Zumkeller, Mar 27 2013
-
Mathematica
Select[FoldList[Times, 1, Prime[Range[70]]], PrimeQ[# - 1] &] - 1 (* Harvey P. Dale, Jan 27 2014 *)