A057715 Numbers m = Product p_i^{e_i}, not a power of a prime, such that p_j^{e_j} > p_k^{e_k} for all p_j < p_k.
12, 24, 40, 45, 48, 56, 63, 80, 96, 112, 135, 144, 160, 175, 176, 189, 192, 208, 224, 275, 288, 297, 320, 325, 351, 352, 384, 405, 416, 425, 448, 459, 475, 513, 539, 544, 567, 575, 576, 608, 621, 637, 640, 675, 704, 720, 736, 768, 800, 832, 833, 864, 875
Offset: 1
Examples
720 is included because 720 = 2^4 * 3^2 * 5^1 and 2^4 > 3^2 > 5^1.
Links
- Lei Zhou, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[575], Greater @@ Power @@@ (fi = FactorInteger[#]) && Length[fi] > 1 &] (* Ray Chandler, Nov 06 2008 *)
Extensions
Title clarified by Sean A. Irvine, Jun 24 2022 and Peter Munn, May 26 2025