cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057719 Prime factors of numbers in A006521 (numbers k that divide 2^k + 1).

Original entry on oeis.org

3, 19, 163, 571, 1459, 8803, 9137, 17497, 41113, 52489, 78787, 87211, 135433, 139483, 144667, 164617, 174763, 196579, 274081, 370009, 370387, 478243, 760267, 941489, 944803, 1041619, 1220347, 1236787, 1319323, 1465129, 1663579, 1994659
Offset: 1

Views

Author

Keywords

Comments

A prime p is in this sequence iff all prime divisors of ord_p(2)/2 are in this sequence, where ord_p(2) is the order of 2 modulo p. - Max Alekseyev, Jul 30 2006

Examples

			2^171 + 1 == 0 (mod 171), 171 = 3^2*19, 2^13203+1 == 0 (mod 13203), 13203 = 3^4*163.
		

Crossrefs

Programs

  • Mathematica
    S = {2}; Reap[For[p = 3, p < 2 10^6, p = NextPrime[p], f = FactorInteger[ MultiplicativeOrder[2, p]]; If[f[[1, 1]] != 2 || f[[1, 2]] != 1, Continue[]]; f = f[[All, 1]]; If[Length[Intersection[S, f]] == Length[f], S = Union[S, {p}]; Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Nov 11 2018, from PARI *)
  • PARI
    { A057719() = local(S,f); S=Set([2]); forprime(p=3,10^7, f=factorint(znorder(Mod(2,p))); if(f[1,1]!=2||f[1,2]!=1,next); f=f[,1]; if(length(setintersect(S,Set(f)))==length(f), S=setunion(S,[p]); print1(p,", "))) }

Extensions

Edited by Max Alekseyev, Jul 30 2006