A057754 Integer nearest to Li(10^n), where Li(x) = integral(0..x, dt/log(t)).
6, 30, 178, 1246, 9630, 78628, 664918, 5762209, 50849235, 455055615, 4118066401, 37607950281, 346065645810, 3204942065692, 29844571475288, 279238344248557, 2623557165610822, 24739954309690415, 234057667376222382
Offset: 1
Keywords
Examples
Li( 10^22 ) = 201467286691248261498.15... => a(22). pi( 10^22 ) = 201467286689315906290.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. Caldwell, values of pi(x)
- B. Riemann, On the Number of Prime Numbers 1859, last page (various transcripts)
- Stephen Wolfram, The Mathematica 3 Book, 1996, Section 3.2.10: Special Functions.
Programs
-
Magma
[Round(LogIntegral(10^n)): n in [1..25]]; // G. C. Greubel, May 17 2019
-
Maple
seq(round(evalf(Li(10^n), 64)), n=1..19); # Peter Luschny, Mar 20 2019
-
Mathematica
Table[Round[LogIntegral[10^n]], {n, 1, 25}]
-
PARI
vector(25, n, round(real(-eint1(-log(10^n)))) ) \\ G. C. Greubel, May 17 2019
-
Sage
[round(li(10^n)) for n in (1..25)] # G. C. Greubel, May 17 2019
Formula
a(n) = round( Li( 10^n )) = round( Ei( log( 10^n ))).
Comments