A106313 Differences between the prime-counting function and Gauss's approximation for number of primes < 10^n.
1, 4, 9, 16, 37, 129, 338, 753, 1700, 3103, 11587, 38262, 108970, 314889, 1052618, 3214631, 7956588, 21949554, 99877774, 222744643, 597394253, 1932355207, 7250186215, 17146907277, 55160980938, 155891678120, 508666658005, 1427745660373, 4551193622463
Offset: 1
Keywords
Examples
Given x = 10^4, pi(x) = 1229, Gauss's approximation = 1245. Thus a(4) = 1245 - 1229 = 16.
References
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
Links
- C. K. Caldwell, How Many Primes Are There?
- Eric Weisstein's World of Mathematics, Prime Counting Function
- Eric Weisstein's World of Mathematics, Logarithmic Integral
- Wikipedia, Prime counting function
Programs
-
Mathematica
Table[Round[Integrate[1/Log[t],{t,2,10^n}]]-PrimePi[10^n],{n,27}] (* James C. McMahon, Feb 01 2024 *)
Formula
Extensions
a(23)-a(24) from Nathaniel Johnston, May 25 2011
a(25)-a(28), obtained using A006880, added by Eduard Roure Perdices, Apr 16 2021
a(29) (using A006880) from Alois P. Heinz, Feb 01 2024
Name clarified by James C. McMahon, Feb 02 2024
Comments