A057775 a(n) is the least prime p such that p-1 is divisible by 2^n and not by 2^(n+1).
2, 3, 5, 41, 17, 97, 193, 641, 257, 7681, 13313, 18433, 12289, 40961, 114689, 163841, 65537, 1179649, 786433, 5767169, 7340033, 23068673, 104857601, 377487361, 754974721, 167772161, 469762049, 2013265921, 3489660929, 12348030977, 3221225473, 75161927681
Offset: 0
Keywords
Examples
a(13) = 40961 = 1 + 8192*5 where the last term is divisible by the 13th power of 2 and 40961 is the smallest prime with that property.
Links
- Donovan Johnson, Table of n, a(n) for n = 0..1000
Programs
-
Maple
f:= proc(n) local p; for p from 2^n+1 by 2^(n+1) do if isprime(p) then return p fi od end proc: map(f, [$0..100]); # Robert Israel, Aug 10 2015
-
Mathematica
Table[k = 1; While[p = k*2^n + 1; ! PrimeQ[p], k = k + 2]; p, {n, 0, 40}] (* T. D. Noe, Dec 27 2011 *)
-
PARI
a(n)=forstep(k=1,9e99,2,isprime((k<
Jeppe Stig Nielsen, Aug 09 2015
Formula
a(n) = prime(A057776(n+1)). - Amiram Eldar, Mar 16 2025
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Nov 03 2000
Comments