cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A201364 Numbers k such that A057775(k) is the factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 25, 39, 41, 57, 67, 75, 120, 127, 147, 209, 229, 231, 290, 302, 320, 455, 547, 558, 747, 1553, 1947, 2027, 2458, 3313, 3508, 4262, 4727, 6210, 6393, 6539, 6838, 7312, 8242, 8557, 9431, 9450, 12189, 13252, 14254, 14280, 15164, 17909, 18759
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 30 2011

Keywords

Comments

Indices of Fermat factors in A057775.

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[k = 1; While[! PrimeQ[p = (2*k - 1)*2^n + 1], k++]; If[IntegerQ[Log[2, MultiplicativeOrder[2, p]]], AppendTo[lst, n]], {n, 320}]; lst
  • PARI
    isok(n)=my(k=-1, p(k)=k*2^n+1, z(k)=znorder(Mod(2, p(k)))); until(isprime(p(k)), k=k+2); z(k)>>valuation(z(k), 2)==1; \\ Arkadiusz Wesolowski, May 26 2023

Extensions

a(44)-a(50) from Arkadiusz Wesolowski, May 26 2023

A204620 Numbers k such that 3*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

41, 209, 157169, 213321, 303093, 382449, 2145353, 2478785
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 17 2012

Keywords

Comments

Terms are odd: by Morehead's theorem, 3*2^(2*n) + 1 can never divide a Fermat number.
No other terms below 7516000.
Is this sequence the same as "Numbers k such that 3*2^k + 1 is a factor of a Fermat number 2^(2^m) + 1 for some m"? - Arkadiusz Wesolowski, Nov 13 2018
The last sentence of Morehead's paper is: "It is easy to show that composite numbers of the forms 2^kappa * 3 + 1, 2^kappa * 5 + 1 can not be factors of Fermat's numbers." [a proof is needed]. - Jeppe Stig Nielsen, Jul 23 2019
Any factor of a Fermat number 2^(2^m) + 1 of the form 3*2^k + 1 is prime if k < 2*m + 6. - Arkadiusz Wesolowski, Jun 12 2021
If, for any m >= 0, F(m) = 2^(2^m) + 1 has a prime factor p of the form 3*2^k + 1, then F(m)/p is congruent to 11 mod 30. - Arkadiusz Wesolowski, Jun 13 2021
A number k belongs to this sequence if and only if the order of 2 modulo p is not divisible by 3, where p is a prime of the form 3*2^k + 1 (see Golomb paper). - Arkadiusz Wesolowski, Jun 14 2021

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 209, 2}]; lst
  • PARI
    isok(n) = my(p = 3*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018

A226366 Numbers k such that 5*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

7, 25, 39, 75, 127, 1947, 3313, 23473, 125413
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2013

Keywords

Comments

No other terms below 5330000.
The reason all terms are odd is that if k is even, then 5*2^k + 1 == (-1)*(-1)^k + 1 = (-1)*1 + 1 = 0 (mod 3). So if k is even, then 3 divides 5*2^k + 1, and since 3 divides no other Fermat number than F_0=3 itself, we do not have a Fermat factor. - Jeppe Stig Nielsen, Jul 21 2019

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 3313, 2}]; lst
  • PARI
    isok(n) = my(p = 5*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018

A035089 Smallest prime of form 2^n*k + 1.

Original entry on oeis.org

2, 3, 5, 17, 17, 97, 193, 257, 257, 7681, 12289, 12289, 12289, 40961, 65537, 65537, 65537, 786433, 786433, 5767169, 7340033, 23068673, 104857601, 167772161, 167772161, 167772161, 469762049, 2013265921, 3221225473, 3221225473, 3221225473, 75161927681
Offset: 0

Views

Author

Keywords

Comments

a(n) is the smallest prime p such that the multiplicative group modulo p has a subgroup of order 2^n. - Joerg Arndt, Oct 18 2020

Crossrefs

Analogous case is A034694. Fermat primes (A019434) are a subset. See also Fermat numbers A000215.

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 1], k++ ]; AppendTo[a, k 2^n + 1], {n, 1, 50}]; a (* Artur Jasinski *)
  • PARI
    a(n)=for(k=1,9e99,if(ispseudoprime(k<Charles R Greathouse IV, Jul 06 2011

Extensions

a(0) from Joerg Arndt, Jul 06 2011

A075978 Positions of check bits in code in A075976.

Original entry on oeis.org

524287, 267912191, 4042816543, 13744315618, 22906842477, 40376162084, 62439401835, 75097753016, 148683059317, 290355594575, 498390060837, 652145353600, 1276493816718, 1985213666020, 2887709403613
Offset: 0

Views

Author

Bob Jenkins (bob_jenkins(AT)burtleburtle.net)

Keywords

References

  • J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.

Crossrefs

A057776 a(n) is the least number k such that prime(k) - 1 is divisible by 2^(n-1) and the quotient is odd.

Original entry on oeis.org

1, 2, 3, 13, 7, 25, 44, 116, 55, 974, 1581, 2111, 1470, 4289, 10847, 15000, 6543, 91466, 62947, 397907, 498178, 1452314, 6025010, 20197904, 38946356, 9385401, 24843812, 98842359, 166808880, 556542914, 154570517, 3132108468, 7417604438, 3217817383, 47999122016
Offset: 1

Views

Author

Labos Elemer, Nov 02 2000

Keywords

Examples

			For n = 1, a(1) = 1, prime(a(1)) = prime(1) = 2 and prime(1)-1 = 1 is divisible by 2^(n-1) = 2^0 = 1; moreover 2 is the smallest.
For n = 10, a(10) = 974, the 974th prime is 7681, prime(974) - 1 = 7680 = 512*15, is divisible by 2^9 = 512 and the quotient is 15, and there are no other primes such this below 7681.
A057775(30) = 12348030977; a(30) = 556542914. It means that 12348030977 is the 556542914th prime. A057777(30) = 12348030976; when A057777(30) is divided by 2^29, the quotient is 23 = A057778(30).
		

Crossrefs

Formula

a(n) = PrimePi(A057775(n-1)). - Amiram Eldar, Mar 16 2025

Extensions

a(32)-a(35) from Amiram Eldar, Mar 16 2025

A201914 Least prime p such that p+1 is divisible by 2^n and not by 2^(n+1).

Original entry on oeis.org

2, 5, 3, 7, 47, 31, 191, 127, 1279, 3583, 5119, 6143, 20479, 8191, 81919, 294911, 1114111, 131071, 786431, 524287, 17825791, 14680063, 138412031, 109051903, 654311423, 1912602623, 738197503, 2818572287, 7247757311, 3758096383, 228707008511, 2147483647
Offset: 0

Views

Author

T. D. Noe, Dec 27 2011

Keywords

Comments

See A126717 for the least k such that k*2^n-1 is prime.
For every n >= 1 there are infinitely many prime numbers p such that p + 1 is divisible by 2^n and not by 2^(n + 1). - Marius A. Burtea, Mar 10 2020

References

  • Laurențiu Panaitopol, Alexandru Gica, Arithmetic problems and number theory, Ed. Gil, Zalău, (2006), ch. 13, p. 78, pr. 5 (in Romanian).

Crossrefs

Cf. A008864 (primes + 1), A057775 (p-1 case), A126717.
For n>0, sequence is first term of A002144, A007520, A141194, A142041, A142939, ...

Programs

  • Magma
    a:=[]; for n in [0..31] do k:=1; while not IsPrime(k*2^n-1) do k:=k+2; end while; Append(~a,k*2^n-1); end for; a; // Marius A. Burtea, Mar 10 2020
  • Mathematica
    Table[k = 1; While[p = k*2^n - 1; ! PrimeQ[p], k = k + 2]; p, {n, 0, 40}]

A057777 a(n) is the smallest number such that a(n)+1 is a prime and the largest power of 2 which divides it is 2^n.

Original entry on oeis.org

1, 2, 4, 40, 16, 96, 192, 640, 256, 7680, 13312, 18432, 12288, 40960, 114688, 163840, 65536, 1179648, 786432, 5767168, 7340032, 23068672, 104857600, 377487360, 754974720, 167772160, 469762048, 2013265920, 3489660928, 12348030976, 3221225472, 75161927680, 184683593728
Offset: 0

Views

Author

Labos Elemer, Nov 02 2000

Keywords

Examples

			The 4th term is 40. It is divisible by 8, 40+1 = 41 is prime. Smaller multiples of 8 are not suitable because, e.g., albeit 8|16 and 16+1 = 17 is a prime, but the largest power of 2 that divides 16 is not 8, it is 16. So 16 is not the 3rd, it is the 4th term here.
		

Crossrefs

Formula

a(n) = A057775(n) - 1. - Sean A. Irvine, Jun 27 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 03 2000

A137990 Least prime p of the form c*3^n+1 with c not divisible by 3.

Original entry on oeis.org

2, 7, 19, 109, 163, 487, 1459, 17497, 52489, 39367, 472393, 4960117, 5314411, 102036673, 19131877, 57395629, 86093443, 258280327, 3874204891, 23245229341, 90656394427, 585779779369, 251048476873, 9790890598009, 4518872583697
Offset: 0

Views

Author

Andrew V. Sutherland, May 01 2008

Keywords

Comments

a(n) is also the least prime such that 3^(n+1), but not 3^(n+2), divides 2^(a(n)-1)-1.

Examples

			a(8)=52489 because 52489=8*3^8+1 is prime and no smaller prime p has p-1 divisible by 3^8 but not 3^9.
		

Crossrefs

A334296 Smallest k such that (2k+1)*2^n+1 is prime.

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 1, 2, 0, 7, 6, 4, 1, 2, 3, 2, 0, 4, 1, 5, 3, 5, 12, 22, 22, 2, 3, 7, 6, 11, 1, 17, 21, 4, 37, 29, 1, 7, 7, 2, 13, 1, 4, 4, 7, 17, 9, 13, 7, 11, 3, 8, 3, 25, 24, 2, 13, 14, 49, 13, 15, 26, 52, 4, 12, 4, 1, 4, 15, 11, 19, 19, 63, 11, 33, 2, 46
Offset: 0

Views

Author

Mike Speciner, Apr 21 2020

Keywords

Comments

A057775 is the corresponding sequence of primes.

Examples

			a(0)=a(1)=a(2)=0 because 2^0+1=2, 2^1+1=3, 2^2+1=5 are prime.
a(3)=2 because 2^8+1=9 and 3*2^8+1=25 are not prime, but 5*2^8+1=41 is.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t, v, k;
       t:= 2^n; v:= -t+1;
       for k from 0 do
          v:= v+2*t;
          if isprime(v) then return k fi
       od
    end proc:
    map(f, [$0..100]); # Robert Israel, Jul 14 2020
  • Mathematica
    a[n_] := Block[{k = 0}, While[! PrimeQ[(2 k + 1) 2^n + 1], k++]; k]; Array[a, 77, 0] (* Giovanni Resta, May 08 2020 *)
  • PARI
    a(n) = my(k=0); while (!isprime((2*k+1)*2^n+1), k++); k; \\ Michel Marcus, Apr 30 2020
  • Python
    from itertools import count
    from sympy import isprime
    def pow2p1() : # generates the sequence
      for n in count() :
        for k in count() :
          if isprime(((2*k+1)<
    				

Formula

a(n) = (A057778(n)-1)/2.
a(n) = ((A057775(n)-1)/2^n-1)/2.
Showing 1-10 of 10 results.