cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A226366 Numbers k such that 5*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

7, 25, 39, 75, 127, 1947, 3313, 23473, 125413
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2013

Keywords

Comments

No other terms below 5330000.
The reason all terms are odd is that if k is even, then 5*2^k + 1 == (-1)*(-1)^k + 1 = (-1)*1 + 1 = 0 (mod 3). So if k is even, then 3 divides 5*2^k + 1, and since 3 divides no other Fermat number than F_0=3 itself, we do not have a Fermat factor. - Jeppe Stig Nielsen, Jul 21 2019

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 3313, 2}]; lst
  • PARI
    isok(n) = my(p = 5*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018

A268657 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.

Original entry on oeis.org

6, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 408, 438, 534, 2208, 3168, 3189, 3912, 34350, 42294, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

Programs

  • PARI
    for(k=1,+oo,p=3*2^k+1;if(ispseudoprime(p),t=znorder(Mod(3,p));bitand(t,t-1)==0&&print1(k,", "))) \\ Jeppe Stig Nielsen, Oct 30 2020

A268658 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 5^(2^m) + 1 for some m.

Original entry on oeis.org

2, 8, 18, 66, 189, 209, 408, 2208, 2816, 3168, 3912, 20909, 54792, 59973, 157169, 303093, 709968, 801978, 1832496, 2145353, 2291610, 5082306, 10829346, 16408818
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

Programs

  • PARI
    for(k=1,+oo,p=3*2^k+1;if(ispseudoprime(p),t=znorder(Mod(5,p));bitand(t,t-1)==0&&print1(k,", "))) \\ Jeppe Stig Nielsen, Oct 30 2020

Extensions

a(24) from Jeppe Stig Nielsen, Oct 30 2020

A268660 Numbers n such that 3*2^n + 1 is a prime factor of a generalized Fermat number 12^(2^m) + 1 for some m.

Original entry on oeis.org

2, 5, 8, 41, 209, 353, 2816, 20909, 42665, 157169, 213321, 303093, 362765, 382449, 2145353, 2478785
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268661 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.

Original entry on oeis.org

3, 55, 127, 13165, 240937, 819739, 1282755
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268662 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 5^(2^m) + 1 for some m.

Original entry on oeis.org

7, 15, 25, 39, 55, 75, 85, 127, 1947, 3313, 13165, 23473, 125413, 1282755, 1777515
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268663 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 6^(2^m) + 1 for some m.

Original entry on oeis.org

127, 4687, 1777515
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268664 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 12^(2^m) + 1 for some m.

Original entry on oeis.org

13, 15, 127, 5947, 26607, 1320487
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268659 Numbers n such that 3*2^n + 1 is a prime factor of a generalized Fermat number 10^(2^m) + 1 for some m.

Original entry on oeis.org

209, 44685, 157169, 303093, 362765, 916773, 2145353
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A229852 3*h^2, where h is an odd integer not divisible by 3.

Original entry on oeis.org

3, 75, 147, 363, 507, 867, 1083, 1587, 1875, 2523, 2883, 3675, 4107, 5043, 5547, 6627, 7203, 8427, 9075, 10443, 11163, 12675, 13467, 15123, 15987, 17787, 18723, 20667, 21675, 23763, 24843, 27075, 28227, 30603, 31827, 34347, 35643, 38307, 39675, 42483, 43923
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 01 2013

Keywords

Comments

If p = a(n)*2^k + 1 divides a composite Fermat number 2^(2^m) + 1 and p is a prime, then k is odd.
More precisely, k == 1 (mod 4) if h == +/- 1 (mod 5) and k == 3 (mod 4) if h == +/- 2 (mod 5) (Krizek, Luca and Somer).

References

  • M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, pp. 63-65.

Crossrefs

Programs

  • Magma
    [3*h^2 : h in [1..121 by 2] | not IsZero(h mod 3)];
    
  • Mathematica
    3*Select[Range[1, 121, 2], Mod[#, 3] > 0 &]^2 (* Amiram Eldar, Jan 02 2021 *)
  • PARI
    forstep(h=1, 121, 2, if(!(h%3==0), print1(3*h^2, ", ")));
    
  • PARI
    Vec(3*x*(1+24*x+22*x^2+24*x^3+x^4) / ((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 26 2016

Formula

G.f.: 3*x*(1+24*x+22*x^2+24*x^3+x^4) / ((1-x)^3*(1+x)^2).
a(n) = 3*A104777(n).
From Colin Barker, Jan 26 2016: (Start)
a(n) = 3*(18*n^2+6*(-1)^n*n-18*n-3*(-1)^n+5)/2.
a(n) = 27*n^2-18*n+3 for n even.
a(n) = 27*n^2-36*n+12 for n odd.
(End)
Sum_{n>=1} 1/a(n) = Pi^2/27 (A291050). - Amiram Eldar, Jan 02 2021
Showing 1-10 of 17 results. Next