cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A268657 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.

Original entry on oeis.org

6, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 408, 438, 534, 2208, 3168, 3189, 3912, 34350, 42294, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

Programs

  • PARI
    for(k=1,+oo,p=3*2^k+1;if(ispseudoprime(p),t=znorder(Mod(3,p));bitand(t,t-1)==0&&print1(k,", "))) \\ Jeppe Stig Nielsen, Oct 30 2020

A268660 Numbers n such that 3*2^n + 1 is a prime factor of a generalized Fermat number 12^(2^m) + 1 for some m.

Original entry on oeis.org

2, 5, 8, 41, 209, 353, 2816, 20909, 42665, 157169, 213321, 303093, 362765, 382449, 2145353, 2478785
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268661 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.

Original entry on oeis.org

3, 55, 127, 13165, 240937, 819739, 1282755
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268662 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 5^(2^m) + 1 for some m.

Original entry on oeis.org

7, 15, 25, 39, 55, 75, 85, 127, 1947, 3313, 13165, 23473, 125413, 1282755, 1777515
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268663 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 6^(2^m) + 1 for some m.

Original entry on oeis.org

127, 4687, 1777515
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268664 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 12^(2^m) + 1 for some m.

Original entry on oeis.org

13, 15, 127, 5947, 26607, 1320487
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268659 Numbers n such that 3*2^n + 1 is a prime factor of a generalized Fermat number 10^(2^m) + 1 for some m.

Original entry on oeis.org

209, 44685, 157169, 303093, 362765, 916773, 2145353
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A273946 Odd prime factors of generalized Fermat numbers of the form 5^(2^m) + 1 with m >= 0.

Original entry on oeis.org

3, 13, 17, 257, 313, 641, 769, 2593, 11489, 19457, 65537, 163841, 786433, 1503233, 1655809, 7340033, 14155777, 18395137, 23606273, 29423041, 39714817, 75068993, 167772161, 2483027969, 4643094529, 6616514561, 47148957697, 241931001601, 2748779069441
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p such that the multiplicative order of 5 (mod p) is a power of 2.

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A199591, A268658, A268662, A273945 (base 3), A273947 (base 6), A273948 (base 7), A273949 (base 11), A273950 (base 12).

Programs

  • Mathematica
    Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[5, #]] &]

A282943 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 7^(2^m) + 1 for some m.

Original entry on oeis.org

8, 12, 36, 276, 408, 2208, 2816, 3168, 3912, 42665, 44685, 59973, 709968, 916773, 1832496
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 25 2017

Keywords

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(400)); IsInteger := func; [n: n in [2..408] | IsPrime(k) and IsInteger(Log(2, Modorder(7, k))) where k is 3*2^n+1];
  • Mathematica
    lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[7, p]], AppendTo[lst, n]], {n, 3912}]; lst

A282944 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 11^(2^m) + 1 for some m.

Original entry on oeis.org

6, 30, 36, 66, 276, 353, 2816, 3189, 34350, 48150, 80190, 1832496, 2291610, 5082306, 10829346
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 25 2017

Keywords

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(350)); IsInteger := func; [n: n in [2..353] | IsPrime(k) and IsInteger(Log(2, Modorder(11, k))) where k is 3*2^n+1];
  • Mathematica
    lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[11, p]], AppendTo[lst, n]], {n, 3189}]; lst
Showing 1-10 of 10 results.