A268657 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.
6, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 408, 438, 534, 2208, 3168, 3189, 3912, 34350, 42294, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346
Offset: 1
Keywords
References
- Wilfrid Keller, private communication, 2008.
Links
- Jeppe Stig Nielsen, Table of n, a(n) for n = 1..41
- Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
- Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
- Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
- C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=3)
- OEIS Wiki, Generalized Fermat numbers
Crossrefs
Programs
-
PARI
for(k=1,+oo,p=3*2^k+1;if(ispseudoprime(p),t=znorder(Mod(3,p));bitand(t,t-1)==0&&print1(k,", "))) \\ Jeppe Stig Nielsen, Oct 30 2020
Comments