cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A204620 Numbers k such that 3*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

41, 209, 157169, 213321, 303093, 382449, 2145353, 2478785
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 17 2012

Keywords

Comments

Terms are odd: by Morehead's theorem, 3*2^(2*n) + 1 can never divide a Fermat number.
No other terms below 7516000.
Is this sequence the same as "Numbers k such that 3*2^k + 1 is a factor of a Fermat number 2^(2^m) + 1 for some m"? - Arkadiusz Wesolowski, Nov 13 2018
The last sentence of Morehead's paper is: "It is easy to show that composite numbers of the forms 2^kappa * 3 + 1, 2^kappa * 5 + 1 can not be factors of Fermat's numbers." [a proof is needed]. - Jeppe Stig Nielsen, Jul 23 2019
Any factor of a Fermat number 2^(2^m) + 1 of the form 3*2^k + 1 is prime if k < 2*m + 6. - Arkadiusz Wesolowski, Jun 12 2021
If, for any m >= 0, F(m) = 2^(2^m) + 1 has a prime factor p of the form 3*2^k + 1, then F(m)/p is congruent to 11 mod 30. - Arkadiusz Wesolowski, Jun 13 2021
A number k belongs to this sequence if and only if the order of 2 modulo p is not divisible by 3, where p is a prime of the form 3*2^k + 1 (see Golomb paper). - Arkadiusz Wesolowski, Jun 14 2021

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 209, 2}]; lst
  • PARI
    isok(n) = my(p = 3*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018

A268657 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.

Original entry on oeis.org

6, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 408, 438, 534, 2208, 3168, 3189, 3912, 34350, 42294, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 382449, 709968, 801978, 916773, 1832496, 2145353, 2291610, 2478785, 5082306, 7033641, 10829346
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

Programs

  • PARI
    for(k=1,+oo,p=3*2^k+1;if(ispseudoprime(p),t=znorder(Mod(3,p));bitand(t,t-1)==0&&print1(k,", "))) \\ Jeppe Stig Nielsen, Oct 30 2020

A268658 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 5^(2^m) + 1 for some m.

Original entry on oeis.org

2, 8, 18, 66, 189, 209, 408, 2208, 2816, 3168, 3912, 20909, 54792, 59973, 157169, 303093, 709968, 801978, 1832496, 2145353, 2291610, 5082306, 10829346, 16408818
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

Programs

  • PARI
    for(k=1,+oo,p=3*2^k+1;if(ispseudoprime(p),t=znorder(Mod(5,p));bitand(t,t-1)==0&&print1(k,", "))) \\ Jeppe Stig Nielsen, Oct 30 2020

Extensions

a(24) from Jeppe Stig Nielsen, Oct 30 2020

A268660 Numbers n such that 3*2^n + 1 is a prime factor of a generalized Fermat number 12^(2^m) + 1 for some m.

Original entry on oeis.org

2, 5, 8, 41, 209, 353, 2816, 20909, 42665, 157169, 213321, 303093, 362765, 382449, 2145353, 2478785
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268661 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.

Original entry on oeis.org

3, 55, 127, 13165, 240937, 819739, 1282755
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268662 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 5^(2^m) + 1 for some m.

Original entry on oeis.org

7, 15, 25, 39, 55, 75, 85, 127, 1947, 3313, 13165, 23473, 125413, 1282755, 1777515
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268663 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 6^(2^m) + 1 for some m.

Original entry on oeis.org

127, 4687, 1777515
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268664 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 12^(2^m) + 1 for some m.

Original entry on oeis.org

13, 15, 127, 5947, 26607, 1320487
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268659 Numbers n such that 3*2^n + 1 is a prime factor of a generalized Fermat number 10^(2^m) + 1 for some m.

Original entry on oeis.org

209, 44685, 157169, 303093, 362765, 916773, 2145353
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A280003 Numbers k such that 7*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

14, 120, 290, 320, 95330, 2167800
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 21 2017

Keywords

Comments

18233956 belongs to this sequence, but its position is currently unknown. - Jeppe Stig Nielsen, Oct 05 2020

Crossrefs

Programs

  • Magma
    IsInteger := func; [n: n in [1..320] | IsPrime(k) and IsInteger(Log(2, Modorder(2, k))) where k is 7*2^n+1];
Showing 1-10 of 15 results. Next