cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057828 Number of perfect squares, k^2, where k^2 <= n and gcd(k,n) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 4, 1, 4, 2, 3, 2, 4, 1, 4, 3, 4, 3, 5, 1, 5, 3, 4, 3, 4, 2, 6, 3, 4, 2, 6, 2, 6, 3, 3, 3, 6, 2, 6, 3, 5, 4, 7, 3, 6, 3, 5, 4, 7, 2, 7, 4, 4, 4, 7, 3, 8, 4, 6, 2, 8, 3, 8, 4, 5, 4, 7, 3, 8, 3, 6, 5, 9, 2, 8, 5, 6, 5, 9, 2, 8, 5, 6, 5, 8, 3, 9, 4, 6, 4, 10, 3, 10, 5
Offset: 1

Views

Author

Leroy Quet, Nov 08 2000

Keywords

Comments

Number of square totatives of n, i.e., number of perfect squares less than n that are coprime to n. - Michael De Vlieger, Dec 11 2017

Examples

			Only 2 squares, 1 and 9, are <= 14 and relatively prime to 14. So a(14) = 2.
		

Crossrefs

Programs

  • Haskell
    a057828 x = length $ filter ((== 1) . (gcd x)) $
                         takeWhile (<= x) $ tail a000290_list
    -- Reinhard Zumkeller, Jul 22 2012
    
  • Maple
    with(numtheory): seq(add(mobius(d)*floor(sqrt(n)/d), d in divisors(n)), n=1..100); # Ridouane Oudra, Jan 26 2025
  • Mathematica
    Table[Count[Range[Sqrt@ n]^2, _?(CoprimeQ[#, n] &)], {n, 104}]
  • PARI
    a(n) = sumdiv(n, d, moebius(d)*(sqrt(n)\d)); \\ Michel Marcus, Jan 27 2025
    
  • PARI
    a(n,f=factor(n))=my(g=f,d); g[,2]=vectorv(#f~,i,1); d=divisors(g,1); sum(i=1,#d, moebius(d[i][2])*sqrtint(n\d[i][1]^2)) \\ Charles R Greathouse IV, Mar 26 2025

Formula

a(n) = Sum_{d|n} mu(d)*floor(sqrt(n)/d). - Ridouane Oudra, Jan 26 2025
a(n) = Sum_{k=1..floor(sqrt(n))} A054521(n,k). - Ridouane Oudra, Mar 25 2025