A057886 Number of integer 4-tuples that give the lengths of the sides of a nondegenerate quadrilateral with perimeter n.
0, 0, 0, 1, 1, 2, 3, 5, 7, 9, 13, 16, 22, 25, 34, 38, 50, 54, 70, 75, 95, 100, 125, 131, 161, 167, 203, 210, 252, 259, 308, 316, 372, 380, 444, 453, 525, 534, 615, 625, 715, 725, 825, 836, 946, 957, 1078, 1090, 1222, 1234, 1378, 1391, 1547, 1560, 1729, 1743
Offset: 1
Keywords
Examples
There are five quadrilaterals with perimeter 8, with sides (1,1,3,3), (1,2,2,3), (1,2,3,2), (1,3,1,3) and (2,2,2,2), so a(8)=5.
Links
- Felix Huber, Table of n, a(n) for n = 1..1000
- James East and Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
- T. Jenkyns and E. Muller, Triangular triples from ceilings to floors, Amer. Math. Monthly, 107 (Aug. 2000), 634-639.
Programs
-
Maple
A057886 := proc(n) local s1, s2, s3, s4, a; a := 0; if 4 <= n then for s1 to floor(1/4*n) do for s2 from s1 to floor(1/3*n - 1/3*s1) do for s3 from max(s2, floor(1/2*n - s1 - s2) + 1) to floor(1/2*n - 1/2*s1 - 1/2*s2) do s4 := n - s1 - s2 - s3; if s1 < s2 and s2 < s3 and s3 < s4 then a := a + 3; elif s2 = s3 and (s1 = s2 or s3 = s4) then a := a + 1; else a := a + 2; end if; end do; end do; end do; end if; return a; end proc; seq(A057886(n), n = 1 .. 56); # Felix Huber, Mar 13 2024
-
Mathematica
Needs["DiscreteMath`Combinatorica`"]; Table[s=Select[Partitions[n], Length[ # ]==4 && #[[1]]
T. D. Noe, Oct 24 2006 *)
Formula
Conjecture: a(1)=0 and, for n>1, a(n)=a(n-1)+d(n-1), where d(n)=floor(n/4)*floor((n-2)/4) if n is even and d(n)=floor((n+1)/4) if n is odd.
Conjectures from Colin Barker, Oct 27 2013: (Start)
a(n) = ((n-1)*((n-2)*n+18)+6*sin((Pi*n)/2)+18*cos((Pi*n)/2))/96 for n even;
a(n) = (n^3-7*n+6*sin((Pi*n)/2)+18*cos((Pi*n)/2))/96 for n odd.
G.f.: x^4*(x^3-x^2+1) / ((x-1)^4*(x+1)^3*(x^2+1)). (End)
Conjecture: a(n) = ( 2*n^3-3*n^2+13*n-18 - 3*(n^2-9*n+6)*(-1)^n + 12*(2+(-1)^n)*(-1)^((2*n+(-1)^n-1)/4) )/192. - Luce ETIENNE, Nov 06 2014
Extensions
Corrected by T. D. Noe, Oct 24 2006