A057904 Positive integers that are not the sum of exactly three positive cubes.
1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88
Offset: 1
Keywords
Examples
3 = 1^3 + 1^3 + 1^3, therefore 3 is not in this sequence. Similarly, 10 = 1^3 + 1^3 + 2^3, therefore 10 is not in this sequence.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Eric Weisstein's World of Mathematics, Cubic Number.
Programs
-
Mathematica
Select[Range[100], Count[ PowersRepresentations[#, 3, 3], pr_List /; FreeQ[pr, 0]] == 0 &] (* Jean-François Alcover, Oct 31 2012 *)
-
PARI
select( {is_A057904(n)=n<3 || !for(c=sqrtnint(n\/3,3),sqrtnint(n-2,3), isA003325(n-c^3)&&return)}, [1..99]) \\ M. F. Hasler, Jun 30 2025
Formula
A025456(a(n)) = 0. - Reinhard Zumkeller, Apr 23 2009
Comments