A058001 Number of 3 X 3 matrices with entries mod n, up to row and column permutation.
1, 36, 738, 8240, 57675, 289716, 1144836, 3780288, 10865205, 27969700, 65834406, 143887536, 295467263, 575308020, 1069960200, 1911933696, 3298486761, 5516122788, 8972008810, 14233690800, 22078652211, 33555443636, 50058302988, 73417387200, 106006948125
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Marko R. Riedel, Number of equivalence classes of matrices, Math Stackexchange.
- Marko R. Riedel, Computing the cycle index for arbitary k x l matrices using Maple
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Mathematica
CoefficientList[Series[x (12x^7+369x^6+2514x^5+4375x^4+2360x^3+423x^2+26x+1)/(x-1)^10,{x,0,30}],x] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,1,36,738,8240,57675,289716,1144836,3780288,10865205},30] (* Harvey P. Dale, Nov 23 2024 *)
Formula
a(n) = (1/3!^2)*(n^9 + 6*n^6 + 9*n^5 + 8*n^3 + 12*n^2).
G.f.: x*(12*x^7+369*x^6+2514*x^5+4375*x^4+2360*x^3+423*x^2+26*x+1) / (x-1)^10. - Colin Barker, Jul 09 2013
Comments