A057815 a(n) = gcd(n,binomial(n,floor(n/2))).
1, 2, 3, 2, 5, 2, 7, 2, 9, 2, 11, 12, 13, 2, 15, 2, 17, 2, 19, 4, 21, 2, 23, 4, 25, 2, 27, 4, 29, 30, 31, 2, 33, 2, 35, 12, 37, 2, 39, 20, 41, 6, 43, 4, 45, 2, 47, 12, 49, 2, 51, 4, 53, 2, 55, 56, 57, 2, 59, 4, 61, 2, 63, 2, 65, 6, 67, 4, 69, 14, 71, 4, 73, 2, 75, 4, 77, 2, 79, 20, 81, 2
Offset: 1
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..10000
Programs
-
Maple
swing := n -> n!/iquo(n,2)!^2: seq(igcd(n,swing(n)), n=1..82); # Peter Luschny, May 17 2013
-
Mathematica
a[n_] := GCD[n, Binomial[n, Floor[n/2]]]; Array[a, 100] (* Jean-François Alcover, Jun 03 2019 *)
-
PARI
a(n) = gcd(n,binomial(n, n\2)); \\ Michel Marcus, Mar 22 2020
Formula
a(2k+1) = 2k+1. a(2k) = A058005(k).
Extensions
Offset changed to 1 by Peter Luschny, May 17 2013
Comments