cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058035 Largest 4th-power-free number dividing n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 8, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 24, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 8, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Henry Bottomley, Nov 16 2000

Keywords

Examples

			a(96) = 24 since the factors of 96 are {1,2,3,4,6,8,12,16,24,32,48,96} but 32, 48 and 96 all contain a 4th power factor (16).
		

Crossrefs

Programs

  • Haskell
    a058035 n = product $
       zipWith (^) (a027748_row n) (map (min 3) $ a124010_row n)
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Mathematica
    f[p_, e_] := p^Min[e, 3]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 09 2022 *)
  • PARI
    a(n) = my(f=factor(n)); for(k=1,#f~,f[k,2]=min(3,f[k,2])); factorback(f); \\ Michel Marcus, Sep 13 2017

Formula

Multiplicative with a(p^e) = p ^ min(e,3), p prime, e > 0. - Reinhard Zumkeller, Jan 06 2012
Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = Product_{p prime} (1 - 1/(p^3*(p+1))) = 0.947733... (A065466). - Amiram Eldar, Oct 13 2022