cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058036 Smallest primitive prime factor of the n-th Lucas number (A000032); i.e., L(n), L(0) = 2, L(1) = 1 and L(n) = L(n-1) + L(n-2).

Original entry on oeis.org

2, 1, 3, 1, 7, 11, 1, 29, 47, 19, 41, 199, 23, 521, 281, 31, 2207, 3571, 107, 9349, 2161, 211, 43, 139, 1103, 101, 90481, 5779, 14503, 59, 2521, 3010349, 1087, 9901, 67, 71, 103681, 54018521, 29134601, 79, 1601, 370248451, 83, 6709, 263, 181, 4969
Offset: 0

Views

Author

Robert G. Wilson v, Nov 16 2000

Keywords

Comments

A Lucas number can have more than one primitive factor; the primitive factors of L(22) are 43 and 307.

Crossrefs

Cf. A000032, A086600 (number of primitive prime factors in L(n)).
Cf. A001578 (analog for Fibonacci).

Programs

  • Mathematica
    a=3; b=-1; prms={}; Table[c=a+b; a=b; b=c; f=First/@FactorInteger[c]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {47}]
  • PARI
    lucas(n) = fibonacci(n+1)+fibonacci(n-1); \\ A000032
    a(n) = {n++; my(v = vector(n, k, k--; lucas(k))); my(vf = vector(n, k, factor(v[k])[,1]~)); for (k=1, n-1, vf[n] = setminus(vf[n], vf[k]);); if (#vf[n], vecmin(vf[n]), 1);} \\ Michel Marcus, May 11 2021