cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A086600 Number of primitive prime factors in the n-th Lucas number A000204(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 2
Offset: 1

Views

Author

T. D. Noe, Jul 24 2003

Keywords

Comments

A prime factor of Lucas(n) is called primitive if it does not divide Lucas(r) for any r < n. It can be shown that there is at least one primitive prime factor for n > 6. When n is prime, all the prime factors of Lucas(n) are primitive.

Examples

			a(22) = 2 because Lucas(22) = 3*43*307 and neither 43 nor 307 divide a smaller Lucas number.
		

Crossrefs

Cf. A000204 (Lucas numbers), A058036, A086598 (number of distinct prime factors), A086599 (number of prime factors, counting multiplicity), A274333.

Programs

  • Magma
    lst:=[]; pr:=1; for n in [1..105] do pd:=PrimeDivisors(Lucas(n)); d:=1; t:=0; for c in [1..#pd] do f:=pd[c]; if Gcd(pr, f) eq 1 then t+:=1; else d:=d*f; end if; end for; Append(~lst, t); pr:=pr*Truncate(Lucas(n)/d); end for; lst; // Arkadiusz Wesolowski, Jun 22 2016
  • Mathematica
    Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; pLst={}; Join[{0}, Table[f=Transpose[FactorInteger[Lucas[n]]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 2, 150}]]

Formula

a(n) = Sum{d|n and n/d odd} mu(n/d) a(d) -1 if 6|n and n/6 is a power of 2.

A274333 Indices of Lucas numbers having exactly one primitive prime factor.

Original entry on oeis.org

0, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 26, 27, 28, 30, 31, 33, 36, 37, 38, 41, 47, 49, 53, 54, 56, 61, 62, 66, 68, 70, 71, 72, 76, 78, 79, 80, 86, 90, 91, 96, 110, 113, 117, 120, 121, 136, 140, 144, 164, 168, 172, 178, 202, 203
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 22 2016

Keywords

Comments

0 together with numbers n such that A086600(n) = 1, except if n = 3.
The only primes in this sequence are the prime numbers in A001606, which gives the indices of prime Lucas numbers.

Crossrefs

Programs

  • Magma
    lst:=[]; pr:=1; for n in [0..203] do pd:=PrimeDivisors(Lucas(n)); d:=1; t:=0; for c in [1..#pd] do f:=pd[c]; if Gcd(pr, f) eq 1 then t+:=1; else d:=d*f; end if; end for; if t eq 1 then Append(~lst, n); end if; pr:=pr*Truncate(Lucas(n)/d); end for; lst;

A121708 Numerator of Sum/Product of first n Fibonacci numbers A000045[n].

Original entry on oeis.org

1, 2, 2, 7, 2, 1, 11, 3, 11, 1, 29, 47, 29, 1, 19, 41, 19, 1, 199, 23, 199, 1, 521, 281, 521, 1, 31, 2207, 31, 1, 3571, 107, 3571, 1, 9349, 2161, 9349, 1, 211, 13201, 211, 1, 64079, 1103, 64079, 1, 15251, 90481, 15251, 1, 5779, 14503, 5779, 1, 1149851, 2521
Offset: 1

Views

Author

Alexander Adamchuk, Aug 16 2006, Sep 21 2006

Keywords

Comments

a(1) = 1 and a(4k+2) = 1 for k>0.
For k >1 a(4k-1) = a(4k+1) = A072183(2k+1) = A061447(2k+1) Primitive part of Lucas(n).

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[Fibonacci[k],{k,1,n}]/Product[Fibonacci[k],{k,1,n}]],{n,1,100}]
    With[{fibs=Fibonacci[Range[60]]},Numerator[Accumulate[fibs]/Rest[ FoldList[ Times,1,fibs]]]] (* This is significantly faster than the first program above *) (* Harvey P. Dale, Aug 19 2012 *)

Formula

a(n) = numerator( sum(k=1..n, Fibonacci(k)) / prod(k=1..n, Fibonacci(k)) ).

A121709 Numerator of Sum/Product of first n Lucas numbers A000032[n].

Original entry on oeis.org

1, 4, 2, 5, 13, 1, 73, 5, 7, 1, 37, 5, 1361, 1, 223, 25, 4673, 1, 24473, 25, 16019, 1, 83879, 65, 62743, 1, 20533, 65, 1505173, 1, 7881193, 85, 5158309, 1, 27009259, 425, 1400221, 1, 1446283, 2225, 69237359, 1, 51790217, 445, 1660959719, 1, 8696897999
Offset: 1

Views

Author

Alexander Adamchuk, Aug 16 2006

Keywords

Comments

5 divides a(4k). a(1) = 1 and a(4k+2) = 1 for k>0.

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[Fibonacci[k-1]+Fibonacci[k+1],{k,1,n}]/Product[Fibonacci[k-1]+Fibonacci[k+1],{k,1,n}]],{n,1,100}]

Formula

a(n) = Numerator[Sum[Lucas[k],{k,1,n}]/Product[Lucas[k],{k,1,n}]], where Lucas[k] = Fibonacci[k-1] + Fibonacci[k+1].

A285314 Numbers k such that the k-th term of some (generalized) Lucas sequence has no primitive prime factor.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 18, 30
Offset: 1

Views

Author

Tomohiro Yamada, Apr 17 2017

Keywords

Comments

For a generalized Lucas sequence {U(n)} = {(a^n - b^n)/(a - b)}, where a + b and ab are nonzero coprime integers and (a/b) is not a root of unity, a prime factor of the n-th term of some Lucas sequence U(n) is called primitive if it does not divide U(r) for any r < n.
Let P = a + b > 0, Q = ab and D = P^2 - 4Q = (a - b)^2. In the case a, b are real (equivalently, D > 0), Carmichael shows that, if n <> 1, 2, 6, then U(n) has at least one primitive prime factor not dividing D except U(3) ((P, Q, D) = (1, -2, 9), (1, -1, 5)), U(5) ((P, Q, D) = (1, -1, 5)) and U(12) ((P, Q, D) = (1, -1, 5)).
Voutier determines the cases U(n) has no primitive prime factor for n = 5, 7 <= n <= 30. For n = 5, 7 <= n <= 30, any prime factor of U(n) divides D or U_r for some r < n in the following cases:
U(5): (P, Q, D) = (1, -1, 5)*, (1, 2, -7), (1, 3, -11), (1, 4, -15)*, (2, 11, -40)*, (12, 55, -76), (12, 377, -1364),
U(7): (P, Q, D) = (1, 2, -7)*, (1, 5, -19),
U(8): (P, Q, D) = (1, 2, -7), (2, 7, -24),
U(10): (P, Q, D) = (2, 3, -8), (5, 7, -3), (5, 18, -47),
U(12): (P, Q, D) = (1, -1, 5), (1, 2, -7), (1, 3, -11), (1, 4, -15), (1, 5, -19), (2, 15, -56),
U(13), U(18), U(30): (P, Q, D) = (1, 2, -7).
(The symbol * indicates that any prime factor of the corresponding U(n) divides D)
Bilu, Hanrot and Voutier shows that these are all for n = 5, n >= 7. Hence this sequence is complete.
From Jianing Song, Feb 23 2019: (Start)
Let {U(n)} be a generalized Lucas sequence. If p is a prime U(p) has no primitive prime factor, then U(p) = +-1. In contrast, if k is a composite number such that U(k) has no primitive prime factor, then U(k) cannot be +-1. As a result, the possible solutions to U(k) = +-1 for some Lucas sequence are k = 1, 2, 3, 5, 7, 13.
From U(1) = 1, U(2) = P, U(3) = P^2 - Q, U(4) = P*(P^2 - 2*Q), U(6) = P*(P^2 - Q)*(P^2 - 3*Q) we can see that for k = 1, 2, 3, 4, 6, there are infinitely many Lucas sequences such that U(k) has no primitive prime factor. Also, for p = 2, 3, there are infinitely many Lucas sequences such that any prime factor of U(p) divides D.
This sequence lists also numbers k such that E(p) = k has no solution over the primes for some Lucas sequence {U(n)}, where E(p) is the entry point of {U(n)} modulo p, that is, the smallest m > 0 such that p divides U(m). (End)

Examples

			If (P, Q, D) = (1, -1, 5) (giving the Fibonacci sequence), U(12) = 144 = 2^4 * 3^2, while U(4) = 3 and U(6) = 8 = 2^3. Hence U(12) with (P, Q, D) = (1, -1, 5) has no primitive prime factor and 12 belongs to this sequence.
		

Crossrefs

Cf. A001578, A058036, A246556 (smallest primitive prime factor of Fibonacci(n), Lucas(n) and Pell(n)).
Cf. A086597, A086600 (number of primitive prime factors in Fibonacci(n) and Lucas(n)).
Showing 1-5 of 5 results.