A058048 For each prime P consider the generalized Collatz sequence of each integer N > 1 defined by c(0) = N, c(m+1) = c(m) * P + 1 if F > P, else c(m+1) = c(m) / F, where F is the smallest factor of c(m), until the sequence cycles. If all c(i) > 1 for some starting number N then P belongs to the sequence (and vice versa).
2, 11, 13, 17, 19, 23, 31, 37, 43, 47, 53, 59, 61, 67, 71, 73, 83, 97, 101, 103, 113, 131, 137, 139, 151, 163, 167, 173, 181, 193, 197, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 313, 331, 347, 353, 367, 373, 379, 383, 389, 401
Offset: 1
Keywords
Examples
With P=11 and c(0)=17 then {c(m)} is 17, 188, 94, 47, 518, 37, 408, 68, 34, 17, ...
Links
- Randall L. Rathbun, Discussion of this sequence
- Carlos Rivera, Puzzle 114. The Murad's generalization of the Collatz's sequences, The Prime Puzzles and Problems Connection.
Extensions
Edited by Henry Bottomley, Jun 14 2002
Corrected by T. D. Noe, Oct 25 2006
Comments