Jeff Heleen has authored 11 sequences. Here are the ten most recent ones:
A330519
Circulant determinant chain starting at 1007749.
Original entry on oeis.org
1007749, 18791108, -186878195, -1050017609, -9619142907, -4098030816, -59235488169, -43035664380, -25214990766, -189627605493, 779029018560, 14532890711040, 364989611366055, 1929185790836472, -1121729573175075, 13492031465869425, 329600773788765624
Offset: 1
A257496
Doubly prime home primes (DPHP).
Original entry on oeis.org
Starting number 16 takes 4 iterations to get to the home prime of 31636373:
16 -> 2 * 2 * 2 * 2;
2222 -> 2 * 11 * 101;
211101 -> 3 * 11 * 6397;
3116397 -> 3 * 163 * 6373;
31636373 -> prime.
Now take all the factors found, in order: 2222211101311639731636373, a prime.
So 16 leads to a DPHP.
- Jeffrey Heleen, Family Numbers: Mathemagical Black Holes, Recreational and Educational Computing, 5:5, pp. 6, 1990.
- Jeffrey Heleen, Family numbers: Constructing Primes by Prime Factor Splicing, J. Recreational Math., Vol. 28 #2, 1996-97, pp. 116-119.
A072712
Primes p such that p divides the (right) concatenation of all numbers from 1 to p written in base 10 (most significant digit on left).
Original entry on oeis.org
2, 3, 5, 8167, 371321
Offset: 1
p=17 is not a term since 1234567891011121314151617 is not divisible by 17.
-
p=""; n=1; while(n<10^4, p=concat(p,Str(n)); if(eval(p)%n==0&&isprime(n), print1(n,", ")); n++) \\ Derek Orr, Oct 04 2014
A080718
1, together with numbers n that are the product of two primes p and q such that the multiset of the digits of n coincides with the multiset of the digits of p and q.
Original entry on oeis.org
1, 1255, 12955, 17482, 25105, 100255, 101299, 105295, 107329, 117067, 124483, 127417, 129595, 132565, 145273, 146137, 149782, 174082, 174298, 174793, 174982, 250105, 256315, 263155, 295105, 297463, 307183, 325615, 371893, 536539
Offset: 1
1255 = 5*251, 12955 = 5*2591, 17482 = 2*8741, 100255 = 5*20051, 146137=317*461, etc.
-
filter:= proc(n) local F,p,q,Ln,Lpq;
F:= ifactors(n)[2];
if nops(F) > 2 or convert(F,`+`)[2]<>2 then return false fi;
p:= F[1][1];
if nops(F) = 2 then q:= F[2][1] else q:= F[1][1] fi;
Ln:= sort(convert(n,base,10));
Lpq:= sort([op(convert(p,base,10)),op(convert(q,base,10))]);
evalb(Ln = Lpq);
end proc:
filter(1):= true:
A080718:= select(filter,[1, seq(4+9*i,i=1..10^6)]); # Robert Israel, May 04 2014
-
ptpQ[n_]:=Module[{sidn=Sort[IntegerDigits[n]],fi=Transpose[ FactorInteger[ n]]}, fi[[2]]=={1,1}&&Sort[Flatten[ IntegerDigits/@ fi[[1]]]]==sidn]; Join[{1}, Select[Range[4,550000,9],ptpQ]] (* Harvey P. Dale, Jun 22 2014 *)
-
from sympy import factorint
from itertools import count, islice
def agen(): # generator
yield 1
for k in count(4, 9):
t = sorted(str(k))
f = factorint(k)
if sum(f.values()) == 2:
p, q = min(f), max(f)
if t == sorted(str(p)+str(q)):
yield k
print(list(islice(agen(), 30))) # Michael S. Branicky, Apr 20 2025
A059758
Undulating palindromic primes: numbers that are prime, palindromic in base 10, and the digits alternate: ababab... with a != b.
Original entry on oeis.org
101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 18181, 32323, 35353, 72727, 74747, 78787, 94949, 95959, 1212121, 1616161, 323232323, 383838383, 727272727, 919191919, 929292929, 979797979, 989898989
Offset: 1
- C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.
- C. W. Trigg, Palindromic Octagonal Numbers, Journal of Recreational Mathematics, 15:1, pp. 41-46, 1982-83.
-
for l from 3 to 31 by 2 do for i from 0 to 9 do for j from 0 to 9 do it1 := sum(i*10^(2*k), k=0..(l-1)/2): it2 := sum(j*10^(2*k+1), k=0..(l-3)/2): if isprime(it1+it2) and i<>j then printf(`%d, `,it1+it2) fi: od: od: od: # James Sellers, Feb 13 2001
-
t = {}; t1 = {1, 3, 7, 9}; Do[p = 10 a + b; q = 10 b + a; t = Join[t, Select[Table[(p*10^(2 n + 1) - q)/99, {n, 4}], PrimeQ]], {a, t1}, {b, Range[0, 9]}]; Union[t] (* Jayanta Basu, Jun 23 2013 *)
uppQ[n_]:=Module[{idn=IntegerDigits[n]},OddQ[Length[idn]]&& PalindromeQ[ n] && Length[Union[Partition[idn,2]]]==1]; Select[Prime[Range[ 51*10^6]], uppQ] (* or *) Select[FromDigits/@Flatten[Table[Riffle[Table[n,i],k],{n,{1,3,7,9}},{i,5},{k,0,9}],2],#>9&&PrimeQ[#]&]//Sort (* The second program is significantly faster than the first. *) (* Harvey P. Dale, Feb 24 2018 *)
-
from sympy import isprime
A059758_list = []
for l in range(1,300):
for a in '1379':
for b in '0123456789':
if a != b:
p = int((a+b)*l+a)
if isprime(p):
A059758_list.append(p) # Chai Wah Wu, Dec 21 2014
A054970
Index numbers for palindromic hexagonal numbers.
Original entry on oeis.org
0, 1, 2, 6, 39, 55, 87, 182, 556, 644, 797, 917, 1593, 1685, 25141, 51425, 55556, 83527, 810311, 1620213, 1853942, 5555556, 17352586, 17835196, 25004441, 91071921, 170563673, 181737182, 184252876, 507354403, 1240058219, 1783816196, 2756800387
Offset: 1
-
Select[Range[0, 10^6], PalindromeQ[PolygonalNumber[6, #]] &] (* Robert Price, Apr 27 2019 *)
A054969
Palindromic hexagonal numbers.
Original entry on oeis.org
0, 1, 6, 66, 3003, 5995, 15051, 66066, 617716, 828828, 1269621, 1680861, 5073705, 5676765, 1264114621, 5289009825, 6172882716, 13953435931, 1313207023131, 5250178710525, 6874200024786, 61728399382716, 602224464422206, 636188414881636, 1250444114440521
Offset: 1
-
Select[PolygonalNumber[6, Range[0, 10^6]], PalindromeQ] (* Robert Price, Apr 27 2019 *)
A054910
Palindromic heptagonal numbers.
Original entry on oeis.org
0, 1, 7, 55, 616, 3553, 4774, 60606, 848848, 4615164, 5400045, 6050506, 7165445617, 62786368726, 65331413356, 73665056637, 91120102119, 345546645543, 365139931563, 947927729749, 3646334336463, 7111015101117, 717685292586717, 19480809790808491
Offset: 1
-
Select[PolygonalNumber[7, Range[0, 10^6]], PalindromeQ] (* Robert Price, Apr 28 2019 *)
A054971
n(5n-3)/2 is a palindromic heptagonal number.
Original entry on oeis.org
1, 2, 5, 16, 38, 44, 156, 583, 1359, 1470, 1556, 53537, 158476, 161656, 171657, 190914, 371778, 382173, 615769, 1207698, 1686537, 16943262, 88274141, 496329416, 765609041, 1820198063, 2497949426, 2850685772, 15911875336
Offset: 1
A054646
Smallest number to give 2^(2n) in a hailstone (or 3x + 1) sequence.
Original entry on oeis.org
1, 3, 21, 75, 151, 1365, 5461, 14563, 87381, 184111, 932067, 5592405, 13256071, 26512143, 357913941, 1431655765, 3817748707, 22906492245, 91625968981, 244335917283, 1466015503701, 5212499568715, 10424999137431
Offset: 1
The "3x+1" sequence starting at 21 is 21, 64, 32, 16, 8, 4, 2, 1, ..., and is the smallest start which contains 64 = 2^(2*3). So a(3) = 21. - _N. J. A. Sloane_, Jul 22 2020
- J. Heleen, Final Peak Sequences for Hailstone Numbers, 1993, preprint. [Apparently unpublished as of June 2017]
Comments