cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A014575 Vampire numbers (definition 2): numbers n with an even number of digits which have a factorization n = i*j where i and j have the same number of digits and the multiset of the digits of n coincides with the multiset of the digits of i and j.

Original entry on oeis.org

1260, 1395, 1435, 1530, 1827, 2187, 6880, 102510, 104260, 105210, 105264, 105750, 108135, 110758, 115672, 116725, 117067, 118440, 120600, 123354, 124483, 125248, 125433, 125460, 125500, 126027, 126846, 129640
Offset: 1

Views

Author

Keywords

Comments

The numbers i and j may not both have trailing zeros. Numbers may have more than one such factorization. However, each n is listed only once. [Comment modified by Rick L. Shepherd, Nov 02 2009]

Examples

			1260 = 21*60, 1395 = 15*93, 1435 = 35*41, 1530 = 30*51, etc.
		

References

  • C. A. Pickover, "Vampire Numbers." Ch. 30 in Keys to Infinity. New York: Wiley, pp. 227-231, 1995.

Crossrefs

The following sequences are all closely related: A020342, A014575, A080718, A280928, A048936, A144563.

Programs

  • Maple
    n := 1 :
    for dgs from 4 to 10 by 2 do
        for a from 10^(dgs-1) to 10^dgs-1 do
            amset := sort(convert(a,base,10)) ;
            isv := false ;
            for d in numtheory[divisors](a) do
                m := a/d ;
                if ( m >= d ) then
                    dset := convert(d,base,10) ;
                    mset := convert(m,base,10) ;
                    fset := sort([op(dset),op(mset)]) ;
                    if fset = amset and nops(dset) = nops(mset) then
                        if (m mod 10 <> 0 ) or (d mod 10 <> 0 ) then
                        printf("%d %d\n",n,a) ;
                        isv := true ;
                        n := n+1 ;
                        end if;
                    end if;
                end if;
                if isv then
                    break;
                end if;
            end do:
        end do:
    end do: # R. J. Mathar, Jan 10 2013
  • Mathematica
    fQ[n_] := If[OddQ@ IntegerLength@ n, False, MemberQ[Map[Sort@ Flatten@ IntegerDigits@ # &, Select[Map[{#, n/#} &, TakeWhile[Divisors@ n, # <= Sqrt@ n &]], SameQ @@ Map[IntegerLength, #] &]], Sort@ IntegerDigits@ n]]; Select[Range[10^6], fQ] (* Michael De Vlieger, Jan 27 2017 *)
  • PARI
    is(n)=my(v=digits(n));if(#v%2,return(0));fordiv(n,d,if(#Str(d)==#v/2 && #Str(n/d)==#v/2 && vecsort(v)==vecsort(digits(eval(Str(d,n/d)))) && (d%10 || (n/d)%10), return(1)));0 \\ Charles R Greathouse IV, Apr 19 2013
    
  • PARI
    is_A014575(n)={my(v=vecsort(Vecsmall(Str(n)))); #v%2 && return; my( M=10^(#v\2), L=M\10); fordiv(n,d, dA048933) if vampire number, or false (empty, 0) else. - M. F. Hasler, Mar 11 2021

Extensions

Edited by N. J. A. Sloane, Jan 03 2009

A020342 Vampire numbers: (definition 1): n has a nontrivial factorization using n's digits.

Original entry on oeis.org

126, 153, 688, 1206, 1255, 1260, 1395, 1435, 1503, 1530, 1827, 2187, 3159, 3784, 6880, 10251, 10255, 10426, 10521, 10525, 10575, 11259, 11439, 11844, 11848, 12006, 12060, 12384, 12505, 12546, 12550, 12595, 12600, 12762, 12768, 12798, 12843, 12955, 12964
Offset: 1

Views

Author

Keywords

Comments

Nontrivial means that there must be at least two factors.
For any a(n), 10*a(n) is also in the sequence, and also in A144563. - M. F. Hasler, Nov 01 2021

Examples

			1395 = 31*9*5, so 1395 is a term.
179739 = 7 * 9 * 9 * 317 so 179739 is a term. - _Sean A. Irvine_, Feb 28 2023
		

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 65.

Crossrefs

Closely related: A014575, A080718, A280928, A048936, A144563.

Programs

  • PARI
    is_A020342(n, m=0, D=vecsort(digits(n)))={ if(m && n >= m && vecsort(digits(n))==D, 1, #D<3, m && (D[1]>=m && vecprod(D)==n), n >= m^2, my(S=Set(D), i, C); fordiv(n,f, f < m && next; f*f > n && break; setminus(Set(digits(f)),S) && next; C=D; foreach(digits(f),d, if(i=vecsearch(C,d), C=C[^i], next(2))); C && is_A020342(n\f, f, C) && return(1)))} \\ See A144563 for a function counting the multiplicity of the representation. - M. F. Hasler, Nov 01 2021

Extensions

Edited by N. J. A. Sloane, Jan 03 2009

A048936 Subset of vampire numbers A014575 having exactly two representations of the desired form.

Original entry on oeis.org

125460, 11930170, 12054060, 12417993, 12600324, 12827650, 13002462, 22569480, 23287176, 26198073, 26373600, 26839800, 46847920, 61360780, 1001795850, 1013265360, 1017509850, 1018172470, 1044022896, 1047395790
Offset: 1

Views

Author

Keywords

Examples

			125460 = 204*615 = 246*510.
11930170 = 1301*9170 = 1310*9107.
12054060 = 2004*6015 = 2406*5010.
		

References

  • C. A. Pickover, "Vampire Numbers." Ch. 30 in Keys to Infinity. New York: Wiley, pp. 227-231, 1995.

Crossrefs

Closely related: A020342, A014575, A080718, A280928, A144563.
Cf. A014575, A048933, ..., A048939.

Extensions

Edited by N. J. A. Sloane, Jan 03 2009
Name edited by M. F. Hasler, Mar 11 2021

A280928 Composite numbers having the same digits as their prime factors (with multiplicity), including zero digits.

Original entry on oeis.org

1255, 12955, 17482, 25105, 100255, 101299, 105295, 107329, 117067, 124483, 127417, 129595, 132565, 145273, 146137, 149782, 163797, 174082, 174298, 174793, 174982, 250105, 256315, 263155, 295105, 297463, 307183, 325615, 371893, 536539, 687919, 1002955, 1004251, 1012099, 1025095, 1029955
Offset: 1

Views

Author

Ely Golden, Jan 11 2017

Keywords

Comments

Subsequence of A176670 as well as A020342.
Is this sequence the intersection of A176670 and A020342?
Excluding 1, all members of A080718 are members of this sequence. The first member of this sequence that is not a member of A080718 is a(17)=163797.

Examples

			100255 is a member of this sequence as 100255 = 5*20051, which is exactly the same set of digits as 100255.
		

Crossrefs

The following sequences are all closely related: A020342, A014575, A080718, A280928, A048936, A144563.

Programs

  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return sum(f.values()) > 1 and sorted(str(n)) == sorted("".join(str(p)*f[p] for p in f))
    print([k for k in range(700000) if ok(k)]) # Michael S. Branicky, Apr 20 2025
  • SageMath
    def digits(x, n):
        if((x<=0)|(n<2)):
            return []
        li=[]
        while(x>0):
            d=divmod(x, n)
            li.append(d[1])
            x=d[0]
        li.sort()
        return li;
    def factorDigits(x, n):
        if((x<=0)|(n<2)):
            return []
        li=[]
        f=list(factor(x))
        #ensures inequality of digits(x, n) and factorDigits(x, n) if x is prime
        if((len(f)==1)&(f[0][1]==1)):
            return [];
        for c in range(len(f)):
            for d in range(f[c][1]):
                ld=digits(f[c][0], n)
                li+=ld
        li.sort()
        return li;
    #this variable affects the radix
    radix=10
    c=2
    index=1
    while(index<=100):
        if(digits(c,radix)==factorDigits(c,radix)):
            print(str(index)+" "+str(c))
            index+=1
        c+=1
    print("complete")
    

A144563 Subset of A020342 (vampire numbers, definition 1) listing numbers which have more than one such representation of the desired form.

Original entry on oeis.org

1260, 1395, 1530, 6880, 12060, 12550, 12600, 13950, 14350, 15030, 15300, 18270, 21870, 31590, 37840, 68800, 102510, 102550, 104260, 105210, 105250, 105264, 105750, 112590, 114390, 116928, 118440, 118480, 119682, 120060, 120600, 123840, 125050, 125460, 125500, 125950
Offset: 1

Views

Author

N. J. A. Sloane, Jan 03 2009, based on email from Zak Seidov

Keywords

Comments

From M. F. Hasler, Nov 01 2021: (Start)
If x is in A020342, then 10*x is in this sequence, and this makes up most of the terms. Exceptions are the terms not ending in 0, {1395, 105264, 116928, 119682, 192375, 258795, 263736, 268398, 289674, 1008126, 1133484, 1173939, ...}. There are terms of the form 10*x in A020342 with x not in A020342, like {25510, 45760, 67950, 136590, 146520, 168520, 175560, 246150, 250510, 255010, ...}. Is any such term in this sequence A144563, or can it be proved there isn't?
All terms have at least 3 distinct prime factors (omega, A001221), and 4 prime factors counted with multiplicity (bigomega, A001222). The squarefree terms are {132430, 174370, 1012990, 1073290, 1094730, 1156990, 1170670, 117393, ...}. (End)

Examples

			1260 = 21*60 = 6*210. 1395 = 5*9*31 = 15*93. 1530 = 30*51 = 3*510.
		

Crossrefs

Closely related: A020342, A014575, A080718, A280928, A048936.

Programs

  • PARI
    /* Helper function: count number of representations of n as product of numbers >= m whose multiset of digits is D, excluding the trivial representation if m = 0. */
    VampRepCount(n, m=0, D=vecsort(digits(n)))={ if(#D<3, m && (D[1]>=m && vecprod(D)==n || vecsort(digits(n))==D), n >= m^2, my(S=Set(D), c=m && vecsort(digits(n))==D, i, C); fordiv(n, f, f < m && next; f*f > n && break; setminus(Set(digits(f)), S) && next; C=D; foreach(digits(f), d, if(i = vecsearch(C,d), C=C[^i], next(2))); C && c += VampRepCount(n\f, f, C) ); c, n >= m && vecsort(digits(n))==D)}
    is_A144563(n)=VampRepCount(n)>1 \\ M. F. Hasler, Nov 01 2021

Formula

Subsequence of A020342; contains 10*A020342 as a subsequence. - M. F. Hasler, Nov 01 2021

Extensions

Corrected A-number in definition. More terms and examples R. J. Mathar, Jan 05 2009
Terms beyond a(15) by M. F. Hasler, Nov 01 2021

A048933 Smallest factor i of any factorization used in the definition of A014575(n).

Original entry on oeis.org

21, 15, 35, 30, 21, 27, 80, 201, 260, 210, 204, 150, 135, 158, 152, 161, 167, 141, 201, 231, 281, 152, 231, 204, 251, 201, 261, 140, 179, 311, 323, 315, 317, 231, 351, 215, 146, 350, 351, 317, 156, 300, 251, 261, 356, 240, 269, 165, 176, 396, 221, 231, 371, 231, 225, 201, 225, 281, 216, 210, 210, 327, 395, 275, 252, 255
Offset: 1

Views

Author

Keywords

References

  • C. A. Pickover, "Vampire Numbers." Ch. 30 in Keys to Infinity. New York: Wiley, pp. 227-231, 1995.

Crossrefs

The following sequences are all closely related: A020342, A014575, A080718, A048936, A144563.
Cf. A048934, ..., A048939.

Programs

Extensions

Edited by N. J. A. Sloane, Jan 03 2009
More terms from R. J. Mathar, Jul 15 2016
Showing 1-6 of 6 results.