cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A014575 Vampire numbers (definition 2): numbers n with an even number of digits which have a factorization n = i*j where i and j have the same number of digits and the multiset of the digits of n coincides with the multiset of the digits of i and j.

Original entry on oeis.org

1260, 1395, 1435, 1530, 1827, 2187, 6880, 102510, 104260, 105210, 105264, 105750, 108135, 110758, 115672, 116725, 117067, 118440, 120600, 123354, 124483, 125248, 125433, 125460, 125500, 126027, 126846, 129640
Offset: 1

Views

Author

Keywords

Comments

The numbers i and j may not both have trailing zeros. Numbers may have more than one such factorization. However, each n is listed only once. [Comment modified by Rick L. Shepherd, Nov 02 2009]

Examples

			1260 = 21*60, 1395 = 15*93, 1435 = 35*41, 1530 = 30*51, etc.
		

References

  • C. A. Pickover, "Vampire Numbers." Ch. 30 in Keys to Infinity. New York: Wiley, pp. 227-231, 1995.

Crossrefs

The following sequences are all closely related: A020342, A014575, A080718, A280928, A048936, A144563.

Programs

  • Maple
    n := 1 :
    for dgs from 4 to 10 by 2 do
        for a from 10^(dgs-1) to 10^dgs-1 do
            amset := sort(convert(a,base,10)) ;
            isv := false ;
            for d in numtheory[divisors](a) do
                m := a/d ;
                if ( m >= d ) then
                    dset := convert(d,base,10) ;
                    mset := convert(m,base,10) ;
                    fset := sort([op(dset),op(mset)]) ;
                    if fset = amset and nops(dset) = nops(mset) then
                        if (m mod 10 <> 0 ) or (d mod 10 <> 0 ) then
                        printf("%d %d\n",n,a) ;
                        isv := true ;
                        n := n+1 ;
                        end if;
                    end if;
                end if;
                if isv then
                    break;
                end if;
            end do:
        end do:
    end do: # R. J. Mathar, Jan 10 2013
  • Mathematica
    fQ[n_] := If[OddQ@ IntegerLength@ n, False, MemberQ[Map[Sort@ Flatten@ IntegerDigits@ # &, Select[Map[{#, n/#} &, TakeWhile[Divisors@ n, # <= Sqrt@ n &]], SameQ @@ Map[IntegerLength, #] &]], Sort@ IntegerDigits@ n]]; Select[Range[10^6], fQ] (* Michael De Vlieger, Jan 27 2017 *)
  • PARI
    is(n)=my(v=digits(n));if(#v%2,return(0));fordiv(n,d,if(#Str(d)==#v/2 && #Str(n/d)==#v/2 && vecsort(v)==vecsort(digits(eval(Str(d,n/d)))) && (d%10 || (n/d)%10), return(1)));0 \\ Charles R Greathouse IV, Apr 19 2013
    
  • PARI
    is_A014575(n)={my(v=vecsort(Vecsmall(Str(n)))); #v%2 && return; my( M=10^(#v\2), L=M\10); fordiv(n,d, dA048933) if vampire number, or false (empty, 0) else. - M. F. Hasler, Mar 11 2021

Extensions

Edited by N. J. A. Sloane, Jan 03 2009

A020342 Vampire numbers: (definition 1): n has a nontrivial factorization using n's digits.

Original entry on oeis.org

126, 153, 688, 1206, 1255, 1260, 1395, 1435, 1503, 1530, 1827, 2187, 3159, 3784, 6880, 10251, 10255, 10426, 10521, 10525, 10575, 11259, 11439, 11844, 11848, 12006, 12060, 12384, 12505, 12546, 12550, 12595, 12600, 12762, 12768, 12798, 12843, 12955, 12964
Offset: 1

Views

Author

Keywords

Comments

Nontrivial means that there must be at least two factors.
For any a(n), 10*a(n) is also in the sequence, and also in A144563. - M. F. Hasler, Nov 01 2021

Examples

			1395 = 31*9*5, so 1395 is a term.
179739 = 7 * 9 * 9 * 317 so 179739 is a term. - _Sean A. Irvine_, Feb 28 2023
		

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 65.

Crossrefs

Closely related: A014575, A080718, A280928, A048936, A144563.

Programs

  • PARI
    is_A020342(n, m=0, D=vecsort(digits(n)))={ if(m && n >= m && vecsort(digits(n))==D, 1, #D<3, m && (D[1]>=m && vecprod(D)==n), n >= m^2, my(S=Set(D), i, C); fordiv(n,f, f < m && next; f*f > n && break; setminus(Set(digits(f)),S) && next; C=D; foreach(digits(f),d, if(i=vecsearch(C,d), C=C[^i], next(2))); C && is_A020342(n\f, f, C) && return(1)))} \\ See A144563 for a function counting the multiplicity of the representation. - M. F. Hasler, Nov 01 2021

Extensions

Edited by N. J. A. Sloane, Jan 03 2009

A280928 Composite numbers having the same digits as their prime factors (with multiplicity), including zero digits.

Original entry on oeis.org

1255, 12955, 17482, 25105, 100255, 101299, 105295, 107329, 117067, 124483, 127417, 129595, 132565, 145273, 146137, 149782, 163797, 174082, 174298, 174793, 174982, 250105, 256315, 263155, 295105, 297463, 307183, 325615, 371893, 536539, 687919, 1002955, 1004251, 1012099, 1025095, 1029955
Offset: 1

Views

Author

Ely Golden, Jan 11 2017

Keywords

Comments

Subsequence of A176670 as well as A020342.
Is this sequence the intersection of A176670 and A020342?
Excluding 1, all members of A080718 are members of this sequence. The first member of this sequence that is not a member of A080718 is a(17)=163797.

Examples

			100255 is a member of this sequence as 100255 = 5*20051, which is exactly the same set of digits as 100255.
		

Crossrefs

The following sequences are all closely related: A020342, A014575, A080718, A280928, A048936, A144563.

Programs

  • Python
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        return sum(f.values()) > 1 and sorted(str(n)) == sorted("".join(str(p)*f[p] for p in f))
    print([k for k in range(700000) if ok(k)]) # Michael S. Branicky, Apr 20 2025
  • SageMath
    def digits(x, n):
        if((x<=0)|(n<2)):
            return []
        li=[]
        while(x>0):
            d=divmod(x, n)
            li.append(d[1])
            x=d[0]
        li.sort()
        return li;
    def factorDigits(x, n):
        if((x<=0)|(n<2)):
            return []
        li=[]
        f=list(factor(x))
        #ensures inequality of digits(x, n) and factorDigits(x, n) if x is prime
        if((len(f)==1)&(f[0][1]==1)):
            return [];
        for c in range(len(f)):
            for d in range(f[c][1]):
                ld=digits(f[c][0], n)
                li+=ld
        li.sort()
        return li;
    #this variable affects the radix
    radix=10
    c=2
    index=1
    while(index<=100):
        if(digits(c,radix)==factorDigits(c,radix)):
            print(str(index)+" "+str(c))
            index+=1
        c+=1
    print("complete")
    

A080718 1, together with numbers n that are the product of two primes p and q such that the multiset of the digits of n coincides with the multiset of the digits of p and q.

Original entry on oeis.org

1, 1255, 12955, 17482, 25105, 100255, 101299, 105295, 107329, 117067, 124483, 127417, 129595, 132565, 145273, 146137, 149782, 174082, 174298, 174793, 174982, 250105, 256315, 263155, 295105, 297463, 307183, 325615, 371893, 536539
Offset: 1

Views

Author

Jeff Heleen, Mar 06 2003

Keywords

Comments

Except for 1, this sequence is a subsequence of A280928. More specifically, members of A280928 are also members of this sequence if and only if they are semiprime. - Ely Golden, Jan 11 2017
This sequence has no equivalent in odd bases. This is because any equivalent of A280928 in an odd base must have all terms having at least 3 prime factors. - Ely Golden, Jan 11 2017
All entries other than 1 are congruent to 4 mod 9, because p*q == p + q mod 9 (with p and q not both divisible by 3) implies p*q == 4 mod 9. - Robert Israel, May 05 2014

Examples

			1255 = 5*251, 12955 = 5*2591, 17482 = 2*8741, 100255 = 5*20051, 146137=317*461, etc.
		

Crossrefs

The following sequences are all closely related: A020342, A014575, A080718, A280928, A048936, A144563.

Programs

  • Maple
    filter:= proc(n) local F,p,q,Ln,Lpq;
      F:= ifactors(n)[2];
      if nops(F) > 2 or convert(F,`+`)[2]<>2 then return false fi;
      p:= F[1][1];
      if nops(F) = 2 then q:= F[2][1] else q:= F[1][1] fi;
      Ln:= sort(convert(n,base,10));
      Lpq:= sort([op(convert(p,base,10)),op(convert(q,base,10))]);
      evalb(Ln = Lpq);
    end proc:
    filter(1):= true:
    A080718:= select(filter,[1, seq(4+9*i,i=1..10^6)]); # Robert Israel, May 04 2014
  • Mathematica
    ptpQ[n_]:=Module[{sidn=Sort[IntegerDigits[n]],fi=Transpose[ FactorInteger[ n]]}, fi[[2]]=={1,1}&&Sort[Flatten[ IntegerDigits/@ fi[[1]]]]==sidn]; Join[{1}, Select[Range[4,550000,9],ptpQ]] (* Harvey P. Dale, Jun 22 2014 *)
  • Python
    from sympy import factorint
    from itertools import count, islice
    def agen(): # generator
        yield 1
        for k in count(4, 9):
            t = sorted(str(k))
            f = factorint(k)
            if sum(f.values()) == 2:
                p, q = min(f), max(f)
                if t == sorted(str(p)+str(q)):
                    yield k
    print(list(islice(agen(), 30))) # Michael S. Branicky, Apr 20 2025

Extensions

Edited by N. J. A. Sloane, Jan 03 2009
Incorrect entry 163797 removed by Robert Israel, May 04 2014

A144563 Subset of A020342 (vampire numbers, definition 1) listing numbers which have more than one such representation of the desired form.

Original entry on oeis.org

1260, 1395, 1530, 6880, 12060, 12550, 12600, 13950, 14350, 15030, 15300, 18270, 21870, 31590, 37840, 68800, 102510, 102550, 104260, 105210, 105250, 105264, 105750, 112590, 114390, 116928, 118440, 118480, 119682, 120060, 120600, 123840, 125050, 125460, 125500, 125950
Offset: 1

Views

Author

N. J. A. Sloane, Jan 03 2009, based on email from Zak Seidov

Keywords

Comments

From M. F. Hasler, Nov 01 2021: (Start)
If x is in A020342, then 10*x is in this sequence, and this makes up most of the terms. Exceptions are the terms not ending in 0, {1395, 105264, 116928, 119682, 192375, 258795, 263736, 268398, 289674, 1008126, 1133484, 1173939, ...}. There are terms of the form 10*x in A020342 with x not in A020342, like {25510, 45760, 67950, 136590, 146520, 168520, 175560, 246150, 250510, 255010, ...}. Is any such term in this sequence A144563, or can it be proved there isn't?
All terms have at least 3 distinct prime factors (omega, A001221), and 4 prime factors counted with multiplicity (bigomega, A001222). The squarefree terms are {132430, 174370, 1012990, 1073290, 1094730, 1156990, 1170670, 117393, ...}. (End)

Examples

			1260 = 21*60 = 6*210. 1395 = 5*9*31 = 15*93. 1530 = 30*51 = 3*510.
		

Crossrefs

Closely related: A020342, A014575, A080718, A280928, A048936.

Programs

  • PARI
    /* Helper function: count number of representations of n as product of numbers >= m whose multiset of digits is D, excluding the trivial representation if m = 0. */
    VampRepCount(n, m=0, D=vecsort(digits(n)))={ if(#D<3, m && (D[1]>=m && vecprod(D)==n || vecsort(digits(n))==D), n >= m^2, my(S=Set(D), c=m && vecsort(digits(n))==D, i, C); fordiv(n, f, f < m && next; f*f > n && break; setminus(Set(digits(f)), S) && next; C=D; foreach(digits(f), d, if(i = vecsearch(C,d), C=C[^i], next(2))); C && c += VampRepCount(n\f, f, C) ); c, n >= m && vecsort(digits(n))==D)}
    is_A144563(n)=VampRepCount(n)>1 \\ M. F. Hasler, Nov 01 2021

Formula

Subsequence of A020342; contains 10*A020342 as a subsequence. - M. F. Hasler, Nov 01 2021

Extensions

Corrected A-number in definition. More terms and examples R. J. Mathar, Jan 05 2009
Terms beyond a(15) by M. F. Hasler, Nov 01 2021

A048933 Smallest factor i of any factorization used in the definition of A014575(n).

Original entry on oeis.org

21, 15, 35, 30, 21, 27, 80, 201, 260, 210, 204, 150, 135, 158, 152, 161, 167, 141, 201, 231, 281, 152, 231, 204, 251, 201, 261, 140, 179, 311, 323, 315, 317, 231, 351, 215, 146, 350, 351, 317, 156, 300, 251, 261, 356, 240, 269, 165, 176, 396, 221, 231, 371, 231, 225, 201, 225, 281, 216, 210, 210, 327, 395, 275, 252, 255
Offset: 1

Views

Author

Keywords

References

  • C. A. Pickover, "Vampire Numbers." Ch. 30 in Keys to Infinity. New York: Wiley, pp. 227-231, 1995.

Crossrefs

The following sequences are all closely related: A020342, A014575, A080718, A048936, A144563.
Cf. A048934, ..., A048939.

Programs

Extensions

Edited by N. J. A. Sloane, Jan 03 2009
More terms from R. J. Mathar, Jul 15 2016

A262743 Predestined numbers: every n number is generated by at least one pair of products, such as n = a*b = c*d, and the multiset of the digits of a and b coincides with the multiset of the digits of c and d.

Original entry on oeis.org

64, 95, 130, 242, 325, 326, 392, 396, 435, 504, 544, 552, 572, 585, 632, 644, 664, 693, 740, 748, 756, 762, 770, 784, 806, 868, 952, 968, 973, 986, 990, 995, 1008
Offset: 1

Views

Author

Francesco Di Matteo, Sep 29 2015

Keywords

Comments

For each pair of products, no more than 1 of the 4 numbers involved may have a trailing zero. E.g., 20 = 1*20 = 2*10 is trivial. Even 3920 = 49*80 = 4*980 is not valid (but note that 392 = 4*98 = 8*49 is a valid term). This rule is similar to that of the vampire numbers (A014575), and prevents trivial proliferations.
The name recalls the "genetic" metaphor of such numbers, that even if genes/digits are recombined, they remain with the same "destiny".
This sequence looks similar to A048936 (a subset of A014575, vampire numbers) but it's not the same because the factors' digits are exclusively the same as those of n, and also see, e.g., 11930170 = 1301*9170 = 1310*9107, which is not a valid predestined number.

Examples

			64  = 1*64 = 4*16;
95  = 1*95 = 5*19;
130 = 2*65 = 5*26;
242 = 2*121 = 11*22, etc.
		

References

  • Francesco Di Matteo, Sequenze ludiche, Game Edizioni (2015), pages 28-37.

Crossrefs

Programs

  • Mathematica
    good[w_] := Block[{L = {}}, Do[If[Length[Select[Join[w[[i]], w[[j]]], Mod[#, 10] == 0 &]] <= 1, AppendTo[L, {w[[i]], w[[j]]}]], {i, Length@w}, {j, i - 1}]; L]; prQ[n_] := Block[{t, d = Select[Divisors@n, #^2 <= n &]}, t = (Last /@ #) & /@ Select[SplitBy[ Sort@ Table[{ Sort@ Join[ IntegerDigits@ e, IntegerDigits [n/e]], {e, n/e}}, {e, d}], First], Length[#] > 1 &]; g = Select[good /@ t, # != {} &]; g != {}]; (* then *) Select[Range[1000], prQ] (* or *) Do[If[prQ@ n, Print[n," ", Flatten[g, 1]]], {n, 10^5}] (* Giovanni Resta, Oct 07 2015 *)

A048938 8-digit vampire numbers (definition 2).

Original entry on oeis.org

10025010, 10042510, 10052010, 10052064, 10081260, 10102252, 10124352, 10124757, 10127475, 10128235, 10129900, 10133788, 10134985, 10149750, 10165680, 10165815, 10166350, 10173820, 10185934, 10192248, 10195794
Offset: 1

Views

Author

Keywords

References

  • C. A. Pickover, "Vampire Numbers." Ch. 30 in Keys to Infinity. New York: Wiley, pp. 227-231, 1995.

Crossrefs

Cf. A014575, A048933, ..., A048936.

A094128 Numbers n that can be factorized n=x*y and containing in their ternary representation the same digits the same number of times as x and y together.

Original entry on oeis.org

44, 116, 128, 132, 152, 296, 320, 332, 344, 348, 380, 384, 396, 440, 452, 456, 464, 476, 800, 872, 880, 888, 944, 960, 980, 992, 996, 1024, 1028, 1032, 1044, 1136, 1140, 1152, 1184, 1188, 1196, 1232, 1280, 1304, 1316, 1320, 1352, 1356, 1368
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 01 2004

Keywords

Examples

			320=16*20, 320->'102212' with 1x'0', 2x'1' and 3x'2': 16->'121' and 20->'202' have together the same ternary digits the same number of times, therefore 320 is a term.
		

Crossrefs

A094208 Least vampire number with n fang pairs.

Original entry on oeis.org

1260, 125460, 13078260, 16758243290880, 24959017348650
Offset: 1

Views

Author

Lekraj Beedassy, May 27 2004

Keywords

Examples

			a(2) is the smallest number which can be written in 2 ways as the product of two numbers with half as many digits and not both ending in 0: 125460 = 204*615 = 246*510. - _Jens Kruse Andersen_, Jun 14 2014
		

Crossrefs

Extensions

Typo in Cf. to A014575 fixed by Jens Kruse Andersen, Jun 14 2014
Showing 1-10 of 10 results.