A058057 Triangle giving coefficients of ménage hit polynomials.
1, 1, 0, 1, 1, 0, 1, 3, 1, 1, 1, 6, 6, 8, 3, 1, 10, 20, 38, 35, 16, 1, 15, 50, 134, 213, 211, 96, 1, 21, 105, 385, 915, 1479, 1459, 675, 1, 28, 196, 952, 3130, 7324, 11692, 11584, 5413, 1, 36, 336, 2100, 9090, 28764, 65784, 104364, 103605, 48800
Offset: 0
Examples
1; 1,0; 1,1,0; 1,3,1,1; 1,6,6,8,3; ...
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
Maple
V := proc(n) local k; add( binomial(2*n-k,k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r,s) coeff( V(r),x,s ); end; a := (n,k)->W(n,n-k);
-
Mathematica
max = 9; f[x_, y_] := Sum[n!*((x*y)^n/(1 + x*(y-1))^(2*n+1)), {n, 0, max}]; Flatten[ MapIndexed[ Take[#1, #2[[1]]] & , CoefficientList[ Series[f[x, y], {x, 0, max}, {y, 0, max}], {x, y}]]] (*Jean-François Alcover, Jun 29 2012, after Vladeta Jovovic *)
Formula
G.f.: Sum(n!*(x*y)^n/(1+x*(y-1))^(2*n+1),n=0..infinity). [Vladeta Jovovic, Dec 13 2009]
Comments