A058064 Find least k such that (n+1)^k + n^k is a prime (A057856); then k=2^m and sequence gives values of m.
0, 0, 0, 1, 0, 0, 1, 0, 0, 5, 0, 1, 2, 0, 0, 2, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 2
Offset: 1
Programs
-
Mathematica
Table[ k = 0; While[ !PrimeQ[ (n + 1)^(2^k) + n^(2^k) ], k++ ]; k, {n, 1, 27} ]