cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A240098 Product of the greatest common divisors of n and k! over k=0..n-1.

Original entry on oeis.org

1, 1, 1, 4, 1, 432, 1, 16384, 19683, 800000, 1, 5159780352, 1, 3373232128, 5189853515625, 281474976710656, 1, 499751156776108032, 1, 524288000000000000000, 262757514534242203161, 299170970322599936, 1, 48239864614087244084529856512, 2910383045673370361328125
Offset: 1

Views

Author

R. J. Mathar, Apr 01 2014

Keywords

Crossrefs

Cf. A058067.

Programs

  • Maple
    A240098 := proc(n)
        mul( igcd(n,k!),k=0..n-1) ;
    end proc:
  • Mathematica
    Table[Times@@Table[GCD[i,n!],{n,0,i-1}],{i,30}] (* Harvey P. Dale, Feb 23 2015 *)
  • PARI
    a(n) = vecprod(vector(n,k, gcd(n, (k-1)!))); \\ Michel Marcus, Sep 29 2020

Formula

a(n) = Product_{k=0..n-1} gcd(n,k!) = n^n/A058067(n).
a(p) = 1 for primes p. - Joerg Arndt, Apr 01 2014
a(p^2)= p^(p*(2*p-3)) for primes p. - R. J. Mathar, Apr 02 2014

Extensions

More terms from Harvey P. Dale, Feb 23 2015
a(20) corrected by Amiram Eldar, Sep 29 2020

A294038 a(n) = Product_{k=0..n-1} n/gcd(n, A056040(k)).

Original entry on oeis.org

1, 1, 4, 27, 64, 3125, 108, 823543, 65536, 14348907, 12500, 285311670611, 746496, 302875106592253, 3294172, 7119140625, 1099511627776, 827240261886336764177, 1549681956, 1978419655660313589123979, 40000000000, 13349464742886867, 1141246682444
Offset: 0

Views

Author

Peter Luschny, Nov 05 2017

Keywords

Crossrefs

Programs

  • Maple
    seq(mul(n/igcd(n, A056040(k)), k=0..n-1), n=0..22);
Showing 1-2 of 2 results.