A058080 Numbers whose product of divisors exceeds their square.
12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 128, 130, 132, 135, 136, 138, 140, 144, 147
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- William Chau, The tau, sigma, rho functions, and some related numbers, Pi Mu Epsilon Journal, Vol. 11, No. 10 (Spring 2004), pp. 519-534; entire issue.
Programs
-
Mathematica
Select[Range[150], #^(DivisorSigma[0, #]/2) > #^2 &] (* Amiram Eldar, Jun 29 2022 *) Select[Range[200],Times@@Divisors[#]>#^2&] (* Harvey P. Dale, Oct 20 2024 *)
-
PARI
is(n)=numdiv(n)>4 \\ Charles R Greathouse IV, Sep 18 2015
-
Python
from sympy import divisor_count def ok(n): return divisor_count(n) > 4 print([k for k in range(148) if ok(k)]) # Michael S. Branicky, Dec 16 2021
Formula
The number of terms not exceeding x is N(x) ~ x*(1 - log(log(x))/log(x)) (Chau, 2004). - Amiram Eldar, Jun 29 2022
Comments