cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058206 McKay-Thompson series of class 12C for the Monster group.

Original entry on oeis.org

1, 7, 15, 71, 106, 273, 486, 961, 1563, 3040, 4692, 8199, 12773, 20919, 31569, 50552, 74368, 114504, 167366, 250033, 358845, 527650, 745688, 1073784, 1504452, 2129317, 2947224, 4122518, 5644462, 7792122, 10585876, 14446420, 19450323, 26307536, 35131220, 47077341, 62449405, 82987854, 109317927, 144252191
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2000

Keywords

Examples

			T12C = 1/q + 7*q + 15*q^3 + 71*q^5 + 106*q^7 + 273*q^9 + 486*q^11 + ...
		

Crossrefs

Programs

  • Mathematica
    QP := QPochhammer; CoefficientList[Series[QP[x^2]^6*QP[x^3]^6 / (QP[x]^6*QP[x^6]^6) + x*QP[x]^6*QP[x^6]^6 / (QP[x^2]^6*QP[x^3]^6), {x, 0, 66}], x] (* Indranil Ghosh, Mar 14 2017 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^2]* eta[q^3]/( eta[q]*eta[q^6]))^6; a := CoefficientList[Series[A + q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 25 2018 *)
    a[ n_] := With[{A = (QPochhammer[ x^3, x^6] / QPochhammer[ x, x^2])^6 }, SeriesCoefficient[ A + x / A, {x, 0, n}]]; Table[ a[ n], {n, 0, 39}] (* Michael Somos, Jul 06 2018 *)
  • PARI
    q='q+O('q^66); Vec( eta(q^2)^6*eta(q^3)^6 / (eta(q)^6*eta(q^6)^6) + q* eta(q)^6*eta(q^6)^6 / (eta(q^2)^6*eta(q^3)^6) )  \\ Joerg Arndt, Mar 13 2017

Formula

Expansion of q^(1/2)*(eta(q^2)*eta(q^3)/(eta(q)*eta(q^6)))^6 + (eta(q)*eta(q^6)/(eta(q^2)*eta(q^3)))^6 in powers of q. - G. A. Edgar, Mar 13 2017
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 18 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 06 2018

Extensions

More terms from G. A. Edgar, Mar 13 2017