cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147780 Number of nodes at n-th level in tree in which top node is 1; each node k has children labeled 1, 2, ..., (k+1)^2 at next level.

Original entry on oeis.org

1, 4, 54, 8422, 464862602, 7134230598346156958, 13246386641663595526163132113862494582602, 643152870463337226096381089442329605982736165294243832777767297119502149008481206286
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2009

Keywords

Comments

See the reference in A058311 for a better way to compute this!

Crossrefs

A variant of A058311. Cf. A147794.

Programs

  • Maple
    M:=3;
    L[0]:=[1]; a[0]:=1;
    for n from 1 to M do
    L[n]:=[];
    t1:=L[n-1];
    tc:=nops(t1);
    for i from 1 to tc do
    t2:=t1[i];
    for j from 1 to (t2+1)^2 do
    L[n]:=[op(L[n]),j]; od:
    a[n]:=nops(L[n]);
    #lprint(n,L[n],a[n]);
    od:
    od:
    [seq(a[n],n=0..M)];
    p := proc(n,k) option remember; local j ; if n = 1 then (k+1)^2; else sum( procname(n-1,j),j=1..(k+1)^2) ; fi; expand(%) ; end: A147780 := proc(n) if n = 0 then 1 ; else subs(k=1, p(n,k)) ; fi; end: for n from 0 do printf("%d,\n", A147780(n)) ; od: # R. J. Mathar, May 04 2009
  • Mathematica
    p[n_, k_] := p[n, k] = If[n == 1, (k + 1)^2, Sum[p[n - 1, j], {j, 1, (k + 1)^2}]];
    a[n_] := a[n] = If[n == 0, 1, p[n, 1]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 5}] (* Jean-François Alcover, Nov 28 2023, after R. J. Mathar *)

Extensions

4 more terms from R. J. Mathar, May 04 2009

A147794 Number of nodes at n-th level in tree in which top node is 1; each node k has children labeled 1, 2, ..., k*(k+1) at next level.

Original entry on oeis.org

1, 2, 8, 120, 40456, 14354709112, 10145806838546891496456, 43814454551364119293851205505402899467594454136, 12230705010706858303154182089533811056819321112988144670126813673854225371091425006635639297686024
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2009

Keywords

Comments

See the reference in A058311 for a better way to compute this!

Crossrefs

A variant of A058311. Cf. A147780.

Programs

  • Maple
    M:=4;
    L[0]:=[1]; a[0]:=1;
    for n from 1 to M do
    L[n]:=[];
    t1:=L[n-1];
    tc:=nops(t1);
    for i from 1 to tc do
    t2:=t1[i];
    for j from 1 to t2*(t2+1) do
    L[n]:=[op(L[n]),j]; od:
    a[n]:=nops(L[n]);
    #lprint(n,L[n],a[n]);
    od:
    od:
    [seq(a[n],n=0..M)];
    p := proc(n,k) option remember; local j ; if n = 1 then k*(k+1); else sum( procname(n-1,j),j=1..k*(k+1)) ; fi; expand(%) ; end: A147794 := proc(n) if n = 0 then 1 ; else subs(k=1, p(n,k)) ; fi; end: for n from 0 do printf("%d,\n", A147794(n)) ; od: # R. J. Mathar, May 04 2009
  • Mathematica
    p[n_, k_] := p[n, k] = If[n == 1, k (k + 1), Sum[p[n - 1, j], {j, 1, k (k + 1)}]];
    a[n_] := If[n == 0, 1, p[n, 1]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 7}] (* Jean-François Alcover, Feb 01 2024, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, May 04 2009
Showing 1-2 of 2 results.