cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058344 Difference between the sum of the odd aliquot divisors of n and the sum of the even aliquot divisors of n.

Original entry on oeis.org

0, 1, 1, -1, 1, 2, 1, -5, 4, 4, 1, -8, 1, 6, 9, -13, 1, 5, 1, -10, 11, 10, 1, -28, 6, 12, 13, -12, 1, 6, 1, -29, 15, 16, 13, -29, 1, 18, 17, -38, 1, 10, 1, -16, 33, 22, 1, -68, 8, 19, 21, -18, 1, 14, 17, -48, 23, 28, 1, -60, 1, 30, 41, -61, 19, 18, 1, -22, 27, 22, 1, -97, 1, 36, 49, -24, 19, 22, 1, -94, 40
Offset: 1

Views

Author

Robert G. Wilson v, Dec 14 2000

Keywords

Comments

The number of terms where the sum of the odd parts is greater than the sum of the even parts up to 10^n: 6, 57, 521, 5070, 50223, 500707, 5002236, ...

Examples

			a(28) = -12 because the sum of the even divisors of 28 (2, 4 and 14) = 20 and the sum of the odd divisors of 28 (1 and 7) = 8.
G.f. = x^2 + x^3 - x^4 + x^5 + 2*x6 + x^7 - 5*x^8 + 4*x^9 + 4*x^10 + x^11 + ...
		

Crossrefs

Cf. A002129.

Programs

  • Mathematica
    f[n_Integer] := Block[{d = Most[Divisors[n]]}, Plus @@ (-d*(-1)^d)]; Table[ f[n], {n, 81}] (* or *)
    Rest[ CoefficientList[ Series[ Sum[ -(-1)^k*k*x^(2k)/(1 - x^k), {k, 100}], {x, 0, 81}], x]] (* Robert G. Wilson v, Aug 26 2005 *)
    Table[With[{d=Most[Divisors[n]]},Total[Select[d,OddQ]]-Total[Select[d,EvenQ]]],{n,90}] (* Harvey P. Dale, Feb 16 2013 *)
  • PARI
    {a(n) = if(n<1, 0, sumdiv(n, d, (dMichael Somos, Aug 21 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum(k=1, n\2, -(-1)^k * k * x^(2*k) / (1 - x^k), x * O(x^n)), n))}; /* Michael Somos, Aug 21 2005 */

Formula

G.f.: Sum_{k>0} -(-1)^k * k * x^(2*k) / (1 - x^k). - Michael Somos, Aug 21 2005

Extensions

Signs added by Michael Somos, Aug 21 2005