cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A339290 Number of oriented series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 103, 306, 930, 2887, 9100, 29082, 93951, 306414, 1007361, 3335088, 11108986, 37203873, 125193694, 423099557, 1435427202, 4886975378, 16690971648, 57172387872, 196358421066, 676050576441, 2332887221847, 8067160995797, 27950871439353, 97019613539949
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

A series configuration is an ordered concatenation of two or more parallel configurations and a parallel configuration is a multiset of two or more unit elements or series configurations. In this variation, parallel configurations may include the unit element only once. a(n) is the total number of series and parallel configurations with n unit elements.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 5: (oooo), (o(o|oo)), ((o|oo)o), (o|ooo), (oo|oo).
a(5) = 13: (ooooo), (oo(o|oo)), (o(o|oo)o), ((o|oo)oo), (o(o|ooo)), (o(oo|oo)), ((o|ooo)o), ((oo|oo)o), (o|oooo), (o|o(o|oo)), (o|(o|oo)o), (oo|ooo), (o|oo|oo).
		

Crossrefs

A003430 is the case with multiple unit elements in parallel allowed.
A058387 is the case that order is not significant in series configurations.
Cf. A339156, A339288, A339289, A339293 (achiral), A339296 (unoriented), A339301 (labeled).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)}

Formula

a(n) = A339288(n) + A339289(n).
G.f.: P(x)/(1 - P(x)) where P(x) is the g.f. of A339289.

A058385 Number of essentially parallel series-parallel networks with n unlabeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 1, 0, 1, 2, 4, 9, 20, 47, 112, 274, 678, 1709, 4346, 11176, 28966, 75656, 198814, 525496, 1395758, 3723986, 9975314, 26817655, 72332320, 195679137, 530814386, 1443556739, 3934880554, 10748839215, 29420919456, 80678144437, 221618678694
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2000

Keywords

Crossrefs

Programs

  • Maple
    Q := x; q[1] := 1; for d from 1 to 40 do q[d+1] := c; Q := Q+c*x^(d+1); t0 := mul((1-x^j)^(-q[j]),j=1..d+1); t01 := series(t0,x,d+2); t05 := series(2*Q +1-x+x^2 -t01, x, d+2); t1 := coeff(t05,x,d+1); t2 := solve(t1,c); q[d+1] := t2; Q := subs(c=t2,Q); Q := series(Q,x,d+2); od: A058385 := n->coeff(Q,x,n);
  • Mathematica
    max = 31; f[x_] := Sum[a[k]*x^k, {k, 0, max}]; a[0] = 0; a[1] = 1; a[2] = 0; a[3] = 1; se = Series[ 1 - x + x^2 + 2*f[x] - Product[(1 - x^j)^(-a[j]), {j, 1, max}], {x, 0, max}]; sol = Solve[ Thread[ CoefficientList[ se, x] == 0]]; A058385 = Table[a[n], {n, 0, max}] /. First[sol] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
    terms = 32; A[] = 0; Do[A[x] = (1/2)*(-1 + x - x^2 + Product[(1 - x^j)^(-Ceiling[Coefficient[A[x], x, j]]), {j, 1,  terms}]) + O[x]^ terms // Normal, 4*terms]; CoefficientList[A[x] + O[x]^terms, x] (* Jean-François Alcover, Jan 10 2018 *)

Formula

G.f. satisfies 1 - x + x^2 + 2*A(x) = Product_{j>=1} (1-x^j)^(-a(j)).

A058386 Essentially series series-parallel networks with n unlabeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 9, 20, 47, 112, 274, 678, 1709, 4346, 11176, 28966, 75656, 198814, 525496, 1395758, 3723986, 9975314, 26817655, 72332320, 195679137, 530814386, 1443556739, 3934880554, 10748839215, 29420919456, 80678144437, 221618678694
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2000

Keywords

Crossrefs

Programs

  • Mathematica
    (* f = g.f. of A058385 *) max = 31; f[x_] := Sum[b[n]*x^n, {n, 0, max}]; b[0] = 0; b[1] = 1; b[2] = 0; b[3] = 1; coef = CoefficientList[ Series[1 - x + x^2 + 2*f[x] - Product[(1 - x^j)^(-b[j]), {j, 1, max}], {x, 0, max}], x][[ 5 ;; All]]; g[x_] := Sum[a[n]*x^n, {n, 0, max}]; a[0] = a[1] = 0; a[2] = a[3] = 1; coeg = CoefficientList[ Series[g[x] - f[x] + x - x^2, {x, 0, max}], x][[ 5 ;; All]]; solf = SolveAlways[ Thread[coef == 0], x] ; solg = SolveAlways[ Thread[coeg == 0] /. solf[[1]], x]; Table[a[n], {n, 0, max}] /. solg[[1]] (* Jean-François Alcover, Jul 18 2012 *)
    terms = 32; (* f = g.f. of A058385 *) f[] = 0; Do[f[x] = (1/2)*(-1 + x - x^2 + Product[(1 - x^j)^(-Ceiling[Coefficient[f[x], x, j]]), {j, 1,  terms}]) + O[x]^ terms // Normal, 4*terms]; A[x_] = f[x] - x + x^2 + O[x]^terms; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 10 2018 *)

Formula

G.f. satisfies A(x) = A058385(x) - x + x^2.
Showing 1-3 of 3 results.