cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A339288 Number of essentially series oriented series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

0, 1, 1, 3, 8, 22, 64, 189, 577, 1788, 5642, 18016, 58213, 189792, 623913, 2065219, 6878429, 23032917, 77500237, 261892491, 888439320, 3024510467, 10329241959, 35379140285, 121502993735, 418306868672, 1443409882944, 4991122973019, 17292424070839, 60021140494647, 208684858267921
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

See A339290 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 3: (oooo), (o(o|oo)), ((o|oo)o).
a(5) = 8: (ooooo), (oo(o|oo)), (o(o|oo)o), ((o|oo)oo), (o(o|ooo)), (o(oo|oo)), ((o|ooo)o), ((oo|oo)o).
		

Crossrefs

Cf. A339154, A339289, A339290, A339291 (achiral), A339294 (unoriented).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p - p/(1+p), -n)}

Formula

G.f.: P(x)^2/(1 - P(x)) where P(x) is the g.f. of A339289.
G.f.: B(x)^2/(1 + B(x)) where B(x) is the g.f. of A339290.

A339289 Number of essentially parallel oriented series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 0, 1, 2, 5, 14, 39, 117, 353, 1099, 3458, 11066, 35738, 116622, 383448, 1269869, 4230557, 14170956, 47693457, 161207066, 546987882, 1862464911, 6361729689, 21793247587, 74855427331, 257743707769, 889477338903, 3076038022778, 10658447368514, 36998473045302
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

See A339290 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(3) = 1: (o|oo).
a(4) = 2: (o|ooo), (oo|oo).
a(5) = 5: (o|oooo), (o|o(o|oo)), (o|(o|oo)o), (oo|ooo), (o|oo|oo).
		

Crossrefs

Cf. A339155, A339288, A339290, A339292 (achiral), A339295 (unoriented).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(1-1/(1+p))}

Formula

G.f.: B(x)/(1 + B(x)) where B(x) is the g.f. of A339290.

A058387 Number of series-parallel networks with n unlabeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 18, 40, 94, 224, 548, 1356, 3418, 8692, 22352, 57932, 151312, 397628, 1050992, 2791516, 7447972, 19950628, 53635310, 144664640, 391358274, 1061628772, 2887113478, 7869761108, 21497678430, 58841838912, 161356288874
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2000

Keywords

Comments

This is a series-parallel network: o-o; all other series-parallel networks are obtained by connecting two series-parallel networks in series or in parallel. See A000084 for examples.
Order is not considered significant in series configurations. - Andrew Howroyd, Dec 22 2020

Examples

			From _Andrew Howroyd_, Dec 22 2020: (Start)
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element (an edge) is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 4: (oooo), (o(o|oo)), (o|ooo), (oo|oo).
a(5) = 8: (ooooo), (oo(o|oo)), (o(o|ooo)), (o(oo|oo)), (o|oooo), (o|o(o|oo)),  (oo|ooo), (o|oo|oo).
(End)
		

Crossrefs

A000084 is the case that multiple edges are allowed.
A058381 is the case that edges are labeled.
A339290 is the case that order is significant in series configurations.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(s=p=vector(n)); p[1]=1; for(n=2, n, s[n]=EulerT(p[1..n])[n]; p[n]=vecsum(EulerT(s[1..n])[n-1..n])-s[n]); concat([0], p+s)} \\ Andrew Howroyd, Dec 22 2020

Formula

a(n) = A058385(n) + A058386(n).

A339291 Number of essentially series achiral series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 13, 21, 44, 76, 158, 281, 584, 1067, 2211, 4131, 8535, 16231, 33481, 64594, 133067, 259821, 534869, 1054751, 2170736, 4316320, 8884035, 17788985, 36627593, 73776883, 151996070, 307705669, 634411061, 1289890551, 2661708319
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

See A339293 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 1: (oooo).
a(5) = 2: (ooooo), (o(o|oo)o).
a(6) = 4: (oooooo), ((o|oo)(o|oo)), (o(o|ooo)o), (o(oo|oo)o).
		

Crossrefs

Cf. A339157, A339288 (oriented), A339290, A339292, A339293, A339294 (unoriented).

Programs

  • PARI
    \\ here B(n) gives A339290 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
    seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=O(x^2)); forstep(n=2, n, 2, p=q*(1 + Z + (1 + Z)*x*Ser(EulerT(Vec(p+(s-subst(p, x, x^2))/2, 1-n))) - p)); Vec(p+O(x*x^n), -n)}

Formula

G.f.: (1 + P(x))*B(x^2) where P(x) is the g.f. of A339292 and B(x) is the g.f. of A339290.

A339292 Number of essentially parallel achiral series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 11, 21, 41, 79, 154, 304, 598, 1188, 2360, 4719, 9431, 18966, 38107, 76968, 155368, 314987, 638325, 1298379, 2640223, 5385737, 10984999, 22465570, 45945256, 94180208, 193076780, 396603802, 814838739, 1676975258, 3452212803, 7117242628
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

See A339293 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(3) = 1: (o|oo).
a(4) = 2: (o|ooo), (oo|oo).
a(5) = 3: (o|oooo), (oo|ooo), (o|oo|oo).
a(6) = 6: (o|ooooo), (o|o(o|oo)o), (oo|oooo), (ooo|ooo), (o|oo|ooo), (oo|oo|oo).
		

Crossrefs

Cf. A339158, A339289 (oriented), A339291, A339293, A339295 (unoriented).

Programs

  • PARI
    \\ here B(n) gives A339290 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
    seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=Z+O(x^2), t=0); forstep(n=2, n, 2, t=q*(1 + p); p=Z + (1 + Z)*x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2, -n-1))) - t); Vec(p+O(x*x^n))}

A339293 Number of achiral series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 17, 34, 62, 123, 230, 462, 879, 1772, 3427, 6930, 13562, 27501, 54338, 110449, 219962, 448054, 898146, 1833248, 3694974, 7556473, 15301319, 31349605, 63734241, 130807801, 266853663, 548599872, 1122544408, 2311386319, 4742103354, 9778950947
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. In this variation, parallel configurations may include the unit element only once. a(n) is the number of series or parallel configurations with n unit elements that are invariant under the reversal of all contained series configurations.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 3: (oooo), (o|ooo), (oo|oo).
a(5) = 5: (ooooo), (o(o|oo)o), (o|oooo), (oo|ooo), (o|oo|oo).
a(6) = 10: (oooooo), ((o|oo)(o|oo)), (o(o|ooo)o), (o(oo|oo)o), (o|ooooo), (o|o(o|oo)o), (oo|oooo), (ooo|ooo), (o|oo|ooo), (oo|oo|oo).
		

Crossrefs

Cf. A339159, A339290 (oriented), A339291, A339292, A339296 (unoriented).

Programs

  • PARI
    \\ here B(n) gives A339290 as a power series.
    \\ Note replacing Z by x/(1-x) gives A339159.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
    seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=Z+O(x^2), t=0); forstep(n=2, n, 2, t=q*(1 + p); p=Z + (1 + Z)*x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2, -n-1))) - t); Vec(p+t+O(x*x^n))}

Formula

a(n) = A339291(n) + A339292(n) for n > 1.

A339294 Number of essentially series unoriented series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

0, 1, 1, 2, 5, 13, 35, 101, 299, 916, 2859, 9087, 29247, 95188, 312490, 1033715, 3441280, 11520726, 38758234, 130962986, 444251957, 1512321767, 5164750890, 17689837577, 60752024243, 209154519704, 721707099632, 2495565928527, 8646220929912, 30010588561120
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

See A339296 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 2: (oooo), (o(o|oo)).
a(5) = 5: (ooooo), (oo(o|oo)), (o(o|oo)o), (o(o|ooo)), (o(oo|oo)).
		

Crossrefs

Cf. A339157, A339288 (oriented), A339290, A339291 (achiral), A339295, A339296.

Programs

  • PARI
    \\ here B(n) gives A339290 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
    seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=O(x^2)); forstep(n=2, n, 2, p=q*(1 + Z + (1 + Z)*x*Ser(EulerT(Vec(p+(s-subst(p, x, x^2))/2, 1-n))) - p)); my(t=B(n, Z)); Vec(p + t - t/(1+t), -n)/2}

Formula

a(n) = (A339288(n) + A339291(n)) / 2.

A339295 Number of essentially parallel unoriented series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 0, 1, 2, 4, 10, 25, 69, 197, 589, 1806, 5685, 18168, 58905, 192904, 637294, 2119994, 7094961, 23865782, 80642017, 273571625, 931389949, 3181184007, 10897272983, 37429033777, 128874546753, 444744161951, 1538030244174, 5329246656885, 18499283612755
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

See A339296 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(3) = 1: (o|oo).
a(4) = 2: (o|ooo), (oo|oo).
a(5) = 4: (o|oooo), (o|o(o|oo)), (oo|ooo), (o|oo|oo).
		

Crossrefs

Cf. A339224, A339289 (oriented), A339292 (achiral), A339294, A339296.

Programs

  • PARI
    \\ here B(n) gives A339290 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
    seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=Z+O(x^2), t=0); forstep(n=2, n, 2, t=q*(1 + p); p=Z + (1 + Z)*x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2, -n-1))) - t); Vec(p+1-1/(1+B(n,Z)))/2}

Formula

a(n) = (A339289(n) + A339292(n)) / 2.

A339296 Number of unoriented series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 1, 2, 4, 9, 23, 60, 170, 496, 1505, 4665, 14772, 47415, 154093, 505394, 1671009, 5561274, 18615687, 62624016, 211605003, 717823582, 2443711716, 8345934897, 28587110560, 98181058020, 338029066457, 1166451261583, 4033596172701, 13975467586797, 48509872173875
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. In this variation, parallel configurations may include the unit element only once. a(n) is the number of distinct series or parallel configurations with n unit elements modulo reversing the order of all series configurations.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 4: (oooo), (o(o|oo)), (o|ooo), (oo|oo).
a(5) = 9: (ooooo), (oo(o|oo)), (o(o|oo)o), (o(o|ooo)), (o(oo|oo)), (o|oooo), (o|o(o|oo)), (oo|ooo), (o|oo|oo).
		

Crossrefs

Cf. A339225, A339290 (oriented), A339293 (achiral), A339294, A339295.

Programs

  • PARI
    \\ here B(n) gives A339290 as a power series.
    \\ Note replacing Z by x/(1-x) gives A339225.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
    seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=Z+O(x^2), t=0); forstep(n=2, n, 2, t=q*(1 + p); p=Z + (1 + Z)*x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2, -n-1))) - t); Vec(p+t+B(n,Z))/2}

Formula

a(n) = A339294(n) + A339295(n) for n > 1.
a(n) = (A339290(n) + A339293(n)) / 2.

A339301 Number of oriented series-parallel networks with n labeled elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 2, 12, 108, 1380, 22440, 446040, 10461360, 282970800, 8670594240, 296850597120, 11230473925440, 465262142304960, 20948652798353280, 1018583225567107200, 53190962586022060800, 2969038807022050963200, 176410305542414738995200, 11116489894884127122969600
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2020

Keywords

Comments

A series configuration is an ordered concatenation of two or more parallel configurations and a parallel configuration is a multiset of two or more unit elements or series configurations. In this variation, parallel configurations may include the unit element only once. a(n) is the total number of series and parallel configurations with n unit elements labeled 1..n.

Examples

			a(3) = 12 because there are 2 unlabeled structures each of which can be labeled in 6 ways. The unlabeled structures are (ooo) and (o|oo).
		

Crossrefs

A048172 is the case with multiple unit elements in parallel allowed.
A058381 is the case that order is not significant in series configurations.
Main diagonal of A339297.
Cf. A339290 (unlabeled), A339299, A339300.

Programs

  • PARI
    \\ Note giving Z=exp(x)-1 gives A048172.
    seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = (1 + Z)*exp(p^2/(1+p)) - 1); Vec(serlaplace(p))}
    
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(serlaplace(subst(serreverse(log(1+x+A) - x^2/(1+x)), x, log(1+x+A))))}

Formula

a(n) = A339299(n) + A339300(n).
E.g.f.: A(x) satisfies A(x) = (1 + x)*exp(A(x)^2/(1+A(x))) - 1.
E.g.f.: P(x)/(1 - P(x)) where P(x) is the e.g.f. of A339300.
E.g.f.: B(log(1+x)) where B(x) is the e.g.f. of A048172.
Showing 1-10 of 11 results. Next